Properties

Label 4.7096.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $7096$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(7096\)\(\medspace = 2^{3} \cdot 887 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.7096.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: even
Determinant: 1.7096.2t1.b.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.7096.1

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{2} + x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 16 a + 2 + \left(5 a + 8\right)\cdot 19 + \left(8 a + 8\right)\cdot 19^{2} + \left(18 a + 1\right)\cdot 19^{3} + \left(10 a + 12\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 a + 18 + \left(13 a + 16\right)\cdot 19 + \left(10 a + 10\right)\cdot 19^{2} + 11\cdot 19^{3} + \left(8 a + 4\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 14 + 13\cdot 19 + 17\cdot 19^{2} + 14\cdot 19^{3} + 15\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 a + 9 + \left(a + 1\right)\cdot 19 + \left(12 a + 14\right)\cdot 19^{2} + \left(16 a + 2\right)\cdot 19^{3} + \left(a + 10\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 14 a + 14 + \left(17 a + 16\right)\cdot 19 + \left(6 a + 5\right)\cdot 19^{2} + \left(2 a + 7\right)\cdot 19^{3} + \left(17 a + 14\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$