Basic invariants
Dimension: | $4$ |
Group: | $C_3^2:D_4$ |
Conductor: | \(7025\)\(\medspace = 5^{2} \cdot 281 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.2.35125.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $C_3^2:D_4$ |
Parity: | even |
Determinant: | 1.281.2t1.a.a |
Projective image: | $\SOPlus(4,2)$ |
Projective stem field: | Galois closure of 6.2.35125.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - x^{5} - x^{4} + 2x^{3} - x^{2} + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$:
\( x^{2} + 58x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 41 a + 27 + \left(44 a + 14\right)\cdot 59 + \left(32 a + 5\right)\cdot 59^{2} + \left(27 a + 9\right)\cdot 59^{3} + \left(34 a + 36\right)\cdot 59^{4} +O(59^{5})\)
$r_{ 2 }$ |
$=$ |
\( 18 a + 9 + \left(14 a + 18\right)\cdot 59 + \left(26 a + 52\right)\cdot 59^{2} + \left(31 a + 3\right)\cdot 59^{3} + \left(24 a + 43\right)\cdot 59^{4} +O(59^{5})\)
| $r_{ 3 }$ |
$=$ |
\( 49 + 20\cdot 59 + 27\cdot 59^{2} + 32\cdot 59^{3} + 16\cdot 59^{4} +O(59^{5})\)
| $r_{ 4 }$ |
$=$ |
\( 8 a + 57 + 2\cdot 59 + \left(56 a + 57\right)\cdot 59^{2} + \left(a + 32\right)\cdot 59^{3} + \left(13 a + 36\right)\cdot 59^{4} +O(59^{5})\)
| $r_{ 5 }$ |
$=$ |
\( 51 a + 6 + \left(58 a + 54\right)\cdot 59 + \left(2 a + 53\right)\cdot 59^{2} + \left(57 a + 37\right)\cdot 59^{3} + \left(45 a + 47\right)\cdot 59^{4} +O(59^{5})\)
| $r_{ 6 }$ |
$=$ |
\( 30 + 7\cdot 59 + 40\cdot 59^{2} + 59^{3} + 56\cdot 59^{4} +O(59^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $4$ |
$6$ | $2$ | $(1,4)(2,5)(3,6)$ | $0$ |
$6$ | $2$ | $(2,3)$ | $2$ |
$9$ | $2$ | $(2,3)(5,6)$ | $0$ |
$4$ | $3$ | $(1,2,3)(4,5,6)$ | $-2$ |
$4$ | $3$ | $(1,2,3)$ | $1$ |
$18$ | $4$ | $(1,4)(2,6,3,5)$ | $0$ |
$12$ | $6$ | $(1,5,2,6,3,4)$ | $0$ |
$12$ | $6$ | $(2,3)(4,5,6)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.