Properties

Label 4.6793.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $6793$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(6793\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.6793.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: even
Determinant: 1.6793.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.6793.1

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{4} + x^{3} + x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 431 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 39 + 262\cdot 431 + 185\cdot 431^{2} + 249\cdot 431^{3} + 191\cdot 431^{4} +O(431^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 108 + 63\cdot 431 + 206\cdot 431^{2} + 48\cdot 431^{3} + 100\cdot 431^{4} +O(431^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 132 + 200\cdot 431 + 311\cdot 431^{2} + 170\cdot 431^{3} + 275\cdot 431^{4} +O(431^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 158 + 353\cdot 431 + 323\cdot 431^{2} + 179\cdot 431^{3} + 201\cdot 431^{4} +O(431^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 426 + 413\cdot 431 + 265\cdot 431^{2} + 213\cdot 431^{3} + 93\cdot 431^{4} +O(431^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$