Properties

Label 4.6642432.12t34.c
Dimension $4$
Group $C_3^2:D_4$
Conductor $6642432$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:\(6642432\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 31^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.4.91517952.1
Galois orbit size: $1$
Smallest permutation container: 12T34
Parity: odd
Projective image: $\SOPlus(4,2)$
Projective field: Galois closure of 6.4.91517952.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: \( x^{2} + 42x + 3 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 15 a + 27 + \left(3 a + 36\right)\cdot 43 + \left(22 a + 8\right)\cdot 43^{2} + \left(14 a + 39\right)\cdot 43^{3} + \left(9 a + 38\right)\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 16 + 18\cdot 43 + 14\cdot 43^{2} + 6\cdot 43^{3} + 2\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 39 a + 37 + \left(35 a + 13\right)\cdot 43 + \left(9 a + 27\right)\cdot 43^{2} + \left(37 a + 4\right)\cdot 43^{3} + \left(24 a + 5\right)\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 4 a + 33 + \left(7 a + 10\right)\cdot 43 + \left(33 a + 1\right)\cdot 43^{2} + \left(5 a + 32\right)\cdot 43^{3} + \left(18 a + 35\right)\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 17 + 24\cdot 43 + 6\cdot 43^{2} + 15\cdot 43^{3} + 13\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 28 a + 42 + \left(39 a + 24\right)\cdot 43 + \left(20 a + 27\right)\cdot 43^{2} + \left(28 a + 31\right)\cdot 43^{3} + \left(33 a + 33\right)\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,5)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $0$
$6$ $2$ $(2,3)$ $-2$
$9$ $2$ $(1,5)(2,3)$ $0$
$4$ $3$ $(1,5,6)(2,3,4)$ $-2$
$4$ $3$ $(2,3,4)$ $1$
$18$ $4$ $(1,2,5,3)(4,6)$ $0$
$12$ $6$ $(1,2,5,3,6,4)$ $0$
$12$ $6$ $(1,5,6)(2,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.