Properties

Label 4.6581.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $6581$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(6581\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.6581.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: even
Determinant: 1.6581.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.6581.1

Defining polynomial

$f(x)$$=$ \( x^{5} - 2x^{2} - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: \( x^{2} + 6x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 3 + 3\cdot 7 + 5\cdot 7^{2} + 3\cdot 7^{3} + 3\cdot 7^{4} +O(7^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 a + 5 + \left(6 a + 4\right)\cdot 7 + \left(6 a + 5\right)\cdot 7^{2} + \left(3 a + 2\right)\cdot 7^{3} + 7^{4} +O(7^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 a + 1 + \left(3 a + 2\right)\cdot 7 + 6 a\cdot 7^{2} + 3\cdot 7^{3} + 2\cdot 7^{4} +O(7^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 4 a + 1 + 7 + 6\cdot 7^{2} + \left(3 a + 6\right)\cdot 7^{3} + \left(6 a + 4\right)\cdot 7^{4} +O(7^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 4 a + 4 + \left(3 a + 2\right)\cdot 7 + 3\cdot 7^{2} + \left(6 a + 4\right)\cdot 7^{3} + \left(6 a + 1\right)\cdot 7^{4} +O(7^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$