Properties

Label 4.61_397.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 61 \cdot 397 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$24217= 61 \cdot 397 $
Artin number field: Splitting field of $f= x^{5} - 5 x^{3} - x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.61_397.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 5 + 19\cdot 47 + 14\cdot 47^{2} + 31\cdot 47^{3} + 6\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 6 + \left(9 a + 26\right)\cdot 47 + \left(3 a + 10\right)\cdot 47^{2} + \left(21 a + 28\right)\cdot 47^{3} + \left(31 a + 18\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 15 + \left(13 a + 35\right)\cdot 47 + \left(46 a + 14\right)\cdot 47^{2} + \left(24 a + 5\right)\cdot 47^{3} + \left(43 a + 20\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 18 + \left(33 a + 37\right)\cdot 47 + 46\cdot 47^{2} + \left(22 a + 8\right)\cdot 47^{3} + \left(3 a + 35\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 3 + \left(37 a + 23\right)\cdot 47 + \left(43 a + 7\right)\cdot 47^{2} + \left(25 a + 20\right)\cdot 47^{3} + \left(15 a + 13\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.