Properties

Label 4.5e7_13e2.5t5.3
Dimension 4
Group $\PGL(2,5)$
Conductor $ 5^{7} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$13203125= 5^{7} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 49 a + 17 + \left(10 a + 52\right)\cdot 79 + \left(25 a + 61\right)\cdot 79^{2} + \left(67 a + 7\right)\cdot 79^{3} + \left(43 a + 45\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 70 + 68\cdot 79 + 32\cdot 79^{2} + 21\cdot 79^{3} + 61\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 a + 68 + \left(44 a + 8\right)\cdot 79 + \left(17 a + 45\right)\cdot 79^{2} + \left(51 a + 40\right)\cdot 79^{3} + \left(50 a + 46\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 75 + 71\cdot 79 + 2\cdot 79^{2} + 43\cdot 79^{3} + 16\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 a + 66 + \left(68 a + 13\right)\cdot 79 + \left(53 a + 76\right)\cdot 79^{2} + \left(11 a + 49\right)\cdot 79^{3} + \left(35 a + 21\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 47 a + 21 + \left(34 a + 21\right)\cdot 79 + \left(61 a + 18\right)\cdot 79^{2} + \left(27 a + 74\right)\cdot 79^{3} + \left(28 a + 45\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3,5,6,4)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)(3,6)(4,5)$ $2$
$15$ $2$ $(1,2)(3,5)$ $0$
$20$ $3$ $(1,3,6)(2,5,4)$ $1$
$30$ $4$ $(1,5,2,3)$ $0$
$24$ $5$ $(2,4,3,5,6)$ $-1$
$20$ $6$ $(1,2,3,5,6,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.