Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 16 a + 10 + \left(14 a + 8\right)\cdot 19 + \left(18 a + 1\right)\cdot 19^{2} + \left(11 a + 2\right)\cdot 19^{3} + \left(2 a + 6\right)\cdot 19^{4} + \left(17 a + 4\right)\cdot 19^{5} + \left(7 a + 4\right)\cdot 19^{6} + \left(10 a + 2\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 + 18\cdot 19 + 7\cdot 19^{2} + 17\cdot 19^{3} + 10\cdot 19^{5} + 12\cdot 19^{6} + 12\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 3 a + 7 + \left(4 a + 7\right)\cdot 19 + 5\cdot 19^{2} + \left(7 a + 14\right)\cdot 19^{3} + \left(16 a + 15\right)\cdot 19^{4} + \left(a + 18\right)\cdot 19^{5} + \left(11 a + 13\right)\cdot 19^{6} + \left(8 a + 4\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 12 a + \left(3 a + 6\right)\cdot 19 + \left(a + 3\right)\cdot 19^{2} + \left(17 a + 13\right)\cdot 19^{3} + \left(8 a + 11\right)\cdot 19^{4} + \left(10 a + 1\right)\cdot 19^{5} + 18\cdot 19^{6} + \left(14 a + 11\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 7 a + 12 + \left(15 a + 16\right)\cdot 19 + 17 a\cdot 19^{2} + \left(a + 10\right)\cdot 19^{3} + \left(10 a + 3\right)\cdot 19^{4} + \left(8 a + 3\right)\cdot 19^{5} + \left(18 a + 8\right)\cdot 19^{6} + \left(4 a + 6\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,3)(4,5)$ |
| $(1,4,2,5,3)$ |
| $(1,4,3,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $5$ |
$2$ |
$(1,3)(4,5)$ |
$0$ |
| $5$ |
$4$ |
$(1,4,3,5)$ |
$0$ |
| $5$ |
$4$ |
$(1,5,3,4)$ |
$0$ |
| $4$ |
$5$ |
$(1,4,2,5,3)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.