Properties

Label 4.5e5_43e2.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 5^{5} \cdot 43^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$5778125= 5^{5} \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{5} + 10 x^{3} - 5 x^{2} + 25 x - 27 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 11 + 31\cdot 41 + 8\cdot 41^{3} + 24\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 19 + \left(3 a + 20\right)\cdot 41 + \left(29 a + 29\right)\cdot 41^{2} + \left(34 a + 2\right)\cdot 41^{3} + \left(21 a + 12\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 4 + \left(37 a + 37\right)\cdot 41 + \left(11 a + 30\right)\cdot 41^{2} + \left(6 a + 36\right)\cdot 41^{3} + \left(19 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 25 + \left(29 a + 20\right)\cdot 41 + \left(17 a + 39\right)\cdot 41^{2} + \left(7 a + 14\right)\cdot 41^{3} + \left(28 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 a + 23 + \left(11 a + 13\right)\cdot 41 + \left(23 a + 22\right)\cdot 41^{2} + \left(33 a + 19\right)\cdot 41^{3} + \left(12 a + 19\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.