Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 11 + 31\cdot 41 + 8\cdot 41^{3} + 24\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 36 a + 19 + \left(3 a + 20\right)\cdot 41 + \left(29 a + 29\right)\cdot 41^{2} + \left(34 a + 2\right)\cdot 41^{3} + \left(21 a + 12\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 5 a + 4 + \left(37 a + 37\right)\cdot 41 + \left(11 a + 30\right)\cdot 41^{2} + \left(6 a + 36\right)\cdot 41^{3} + \left(19 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 13 a + 25 + \left(29 a + 20\right)\cdot 41 + \left(17 a + 39\right)\cdot 41^{2} + \left(7 a + 14\right)\cdot 41^{3} + \left(28 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 28 a + 23 + \left(11 a + 13\right)\cdot 41 + \left(23 a + 22\right)\cdot 41^{2} + \left(33 a + 19\right)\cdot 41^{3} + \left(12 a + 19\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $10$ | $2$ | $(1,2)$ | $-2$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $20$ | $3$ | $(1,2,3)$ | $1$ |
| $30$ | $4$ | $(1,2,3,4)$ | $0$ |
| $24$ | $5$ | $(1,2,3,4,5)$ | $-1$ |
| $20$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.