Properties

Label 4.5e4_71e3.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{4} \cdot 71^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$223694375= 5^{4} \cdot 71^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} - 4 x^{3} + 21 x^{2} - 37 x + 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 19 + 22\cdot 29 + \left(a + 15\right)\cdot 29^{2} + \left(3 a + 23\right)\cdot 29^{3} + \left(20 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 8\cdot 29 + 8\cdot 29^{2} + 26\cdot 29^{3} + 10\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 9 + \left(8 a + 12\right)\cdot 29 + \left(13 a + 10\right)\cdot 29^{2} + \left(8 a + 1\right)\cdot 29^{3} + \left(9 a + 19\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 + 25\cdot 29 + 21\cdot 29^{2} + 25\cdot 29^{3} + 20\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 12 + \left(20 a + 8\right)\cdot 29 + \left(15 a + 10\right)\cdot 29^{2} + \left(20 a + 1\right)\cdot 29^{3} + \left(19 a + 28\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 12 + \left(28 a + 9\right)\cdot 29 + \left(27 a + 20\right)\cdot 29^{2} + \left(25 a + 8\right)\cdot 29^{3} + \left(8 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(2,3)$ $0$
$9$ $2$ $(1,4)(2,3)$ $0$
$4$ $3$ $(2,3,5)$ $-2$
$4$ $3$ $(1,4,6)(2,3,5)$ $1$
$18$ $4$ $(1,2,4,3)(5,6)$ $0$
$12$ $6$ $(1,2,4,3,6,5)$ $1$
$12$ $6$ $(1,4,6)(2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.