Properties

Label 4.5e4_71e2.8t16.2
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 71^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$3150625= 5^{4} \cdot 71^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 3 x^{6} + 11 x^{5} - 30 x^{4} + 36 x^{3} + 13 x^{2} - 142 x + 121 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 26 + 2\cdot 101 + 88\cdot 101^{2} + 18\cdot 101^{3} + 69\cdot 101^{4} + 61\cdot 101^{5} + 43\cdot 101^{6} +O\left(101^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 37 + 31\cdot 101 + 88\cdot 101^{2} + 34\cdot 101^{3} + 61\cdot 101^{4} + 98\cdot 101^{5} + 39\cdot 101^{6} +O\left(101^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 43 + 18\cdot 101 + 39\cdot 101^{2} + 45\cdot 101^{3} + 36\cdot 101^{4} + 100\cdot 101^{5} + 63\cdot 101^{6} +O\left(101^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 53 + 42\cdot 101 + 80\cdot 101^{2} + 25\cdot 101^{3} + 77\cdot 101^{4} + 37\cdot 101^{5} + 28\cdot 101^{6} +O\left(101^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 81 + 37\cdot 101 + 95\cdot 101^{2} + 10\cdot 101^{3} + 19\cdot 101^{4} + 2\cdot 101^{5} + 66\cdot 101^{6} +O\left(101^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 86 + 79\cdot 101 + 50\cdot 101^{2} + 84\cdot 101^{3} + 70\cdot 101^{4} + 22\cdot 101^{5} + 10\cdot 101^{6} +O\left(101^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 87 + 24\cdot 101 + 46\cdot 101^{2} + 21\cdot 101^{3} + 95\cdot 101^{4} + 3\cdot 101^{5} + 90\cdot 101^{6} +O\left(101^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 94 + 65\cdot 101 + 16\cdot 101^{2} + 61\cdot 101^{3} + 75\cdot 101^{4} + 76\cdot 101^{5} + 61\cdot 101^{6} +O\left(101^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,5)(6,8)$
$(1,3,8,7,4,5,6,2)$
$(2,7)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,7)(3,5)(6,8)$ $-4$
$2$ $2$ $(2,7)(3,5)$ $0$
$4$ $2$ $(3,5)(6,8)$ $0$
$4$ $2$ $(1,8)(2,3)(4,6)(5,7)$ $0$
$2$ $4$ $(1,8,4,6)(2,3,7,5)$ $0$
$2$ $4$ $(1,8,4,6)(2,5,7,3)$ $0$
$4$ $8$ $(1,3,8,7,4,5,6,2)$ $0$
$4$ $8$ $(1,7,6,3,4,2,8,5)$ $0$
$4$ $8$ $(1,3,6,7,4,5,8,2)$ $0$
$4$ $8$ $(1,7,8,3,4,2,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.