Properties

Label 4.5e4_431e2.8t16.2c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 431^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$116100625= 5^{4} \cdot 431^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 33 x^{6} - 56 x^{5} + 350 x^{4} - 306 x^{3} + 1678 x^{2} - 633 x + 3641 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 521 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 23 + 307\cdot 521 + 327\cdot 521^{2} + 507\cdot 521^{3} + 434\cdot 521^{4} + 211\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 66 + 395\cdot 521 + 203\cdot 521^{2} + 146\cdot 521^{3} + 40\cdot 521^{4} + 491\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 261 + 518\cdot 521 + 192\cdot 521^{2} + 11\cdot 521^{3} + 130\cdot 521^{4} + 319\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 271 + 244\cdot 521 + 55\cdot 521^{2} + 52\cdot 521^{3} + 320\cdot 521^{4} + 454\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 276 + 336\cdot 521 + 196\cdot 521^{2} + 324\cdot 521^{3} + 453\cdot 521^{4} + 445\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 365 + 398\cdot 521 + 382\cdot 521^{2} + 85\cdot 521^{3} + 316\cdot 521^{4} + 510\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 374 + 284\cdot 521 + 116\cdot 521^{2} + 239\cdot 521^{3} + 264\cdot 521^{4} + 150\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 451 + 119\cdot 521 + 87\cdot 521^{2} + 196\cdot 521^{3} + 124\cdot 521^{4} + 21\cdot 521^{5} +O\left(521^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(4,5)$
$(1,6,4,2,7,3,5,8)$
$(2,8)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,8)(3,6)(4,5)$$-4$
$2$$2$$(2,8)(3,6)$$0$
$4$$2$$(2,8)(4,5)$$0$
$4$$2$$(1,4)(2,6)(3,8)(5,7)$$0$
$2$$4$$(1,4,7,5)(2,3,8,6)$$0$
$2$$4$$(1,4,7,5)(2,6,8,3)$$0$
$4$$8$$(1,6,4,2,7,3,5,8)$$0$
$4$$8$$(1,2,5,6,7,8,4,3)$$0$
$4$$8$$(1,6,4,8,7,3,5,2)$$0$
$4$$8$$(1,8,5,6,7,2,4,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.