Properties

Label 4.5e4_331e2.8t16.1c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 331^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$68475625= 5^{4} \cdot 331^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 22 x^{6} + 59 x^{5} + 215 x^{4} - 386 x^{3} - 1042 x^{2} + 842 x + 1991 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 29 + 8\cdot 241 + 103\cdot 241^{2} + 185\cdot 241^{3} + 82\cdot 241^{4} + 63\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 30 + 6\cdot 241 + 78\cdot 241^{2} + 77\cdot 241^{3} + 84\cdot 241^{4} + 173\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 58 + 220\cdot 241 + 117\cdot 241^{2} + 199\cdot 241^{3} + 142\cdot 241^{4} + 31\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 112 + 114\cdot 241 + 112\cdot 241^{2} + 197\cdot 241^{3} + 124\cdot 241^{4} + 126\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 138 + 47\cdot 241 + 20\cdot 241^{2} + 2\cdot 241^{3} + 140\cdot 241^{4} + 210\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 177 + 165\cdot 241 + 96\cdot 241^{2} + 67\cdot 241^{3} + 108\cdot 241^{4} + 119\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 202 + 24\cdot 241 + 76\cdot 241^{2} + 109\cdot 241^{3} + 87\cdot 241^{4} + 98\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 221 + 135\cdot 241 + 118\cdot 241^{2} + 125\cdot 241^{3} + 193\cdot 241^{4} + 140\cdot 241^{5} +O\left(241^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,3,5,6,4,2,7)$
$(2,3)(5,7)$
$(4,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,3)(4,8)(5,7)$$-4$
$2$$2$$(4,8)(5,7)$$0$
$4$$2$$(2,3)(5,7)$$0$
$4$$2$$(1,3)(2,6)(4,7)(5,8)$$0$
$2$$4$$(1,3,6,2)(4,7,8,5)$$0$
$2$$4$$(1,3,6,2)(4,5,8,7)$$0$
$4$$8$$(1,8,3,5,6,4,2,7)$$0$
$4$$8$$(1,5,2,8,6,7,3,4)$$0$
$4$$8$$(1,8,3,7,6,4,2,5)$$0$
$4$$8$$(1,7,2,8,6,5,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.