Properties

Label 4.5e4_311e2.8t16.2c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 311^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$60450625= 5^{4} \cdot 311^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 23 x^{6} - 29 x^{5} + 230 x^{4} - 124 x^{3} + 1133 x^{2} - 162 x + 2201 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 401 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 103 + 75\cdot 401 + 35\cdot 401^{2} + 66\cdot 401^{3} + 64\cdot 401^{4} + 283\cdot 401^{5} + 288\cdot 401^{6} +O\left(401^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 105 + 195\cdot 401 + 204\cdot 401^{2} + 197\cdot 401^{3} + 137\cdot 401^{4} + 401^{5} + 191\cdot 401^{6} +O\left(401^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 185 + 144\cdot 401 + 51\cdot 401^{2} + 13\cdot 401^{3} + 363\cdot 401^{4} + 214\cdot 401^{5} + 334\cdot 401^{6} +O\left(401^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 187 + 264\cdot 401 + 220\cdot 401^{2} + 144\cdot 401^{3} + 35\cdot 401^{4} + 334\cdot 401^{5} + 236\cdot 401^{6} +O\left(401^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 214 + 231\cdot 401 + 114\cdot 401^{2} + 18\cdot 401^{3} + 190\cdot 401^{4} + 298\cdot 401^{5} + 400\cdot 401^{6} +O\left(401^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 252 + 36\cdot 401 + 183\cdot 401^{2} + 147\cdot 401^{3} + 62\cdot 401^{4} + 296\cdot 401^{5} + 363\cdot 401^{6} +O\left(401^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 261 + 24\cdot 401 + 363\cdot 401^{2} + 42\cdot 401^{3} + 239\cdot 401^{4} + 289\cdot 401^{5} + 313\cdot 401^{6} +O\left(401^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 299 + 230\cdot 401 + 30\cdot 401^{2} + 172\cdot 401^{3} + 111\cdot 401^{4} + 287\cdot 401^{5} + 276\cdot 401^{6} +O\left(401^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,3)(6,7)$
$(1,6,2,5,4,7,3,8)$
$(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-4$
$2$$2$$(5,8)(6,7)$$0$
$4$$2$$(2,3)(6,7)$$0$
$4$$2$$(1,2)(3,4)(5,7)(6,8)$$0$
$2$$4$$(1,2,4,3)(5,7,8,6)$$0$
$2$$4$$(1,3,4,2)(5,7,8,6)$$0$
$4$$8$$(1,6,2,5,4,7,3,8)$$0$
$4$$8$$(1,5,3,6,4,8,2,7)$$0$
$4$$8$$(1,6,3,5,4,7,2,8)$$0$
$4$$8$$(1,5,2,6,4,8,3,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.