Properties

Label 4.5e4_271e2.8t16.1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 271^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$45900625= 5^{4} \cdot 271^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 17 x^{6} + 54 x^{5} + 140 x^{4} - 326 x^{3} - 612 x^{2} + 747 x + 1271 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 521 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 23 + 195\cdot 521 + 68\cdot 521^{2} + 470\cdot 521^{3} + 368\cdot 521^{4} + 405\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 52 + 160\cdot 521 + 308\cdot 521^{2} + 401\cdot 521^{3} + 68\cdot 521^{4} + 396\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 82 + 201\cdot 521 + 507\cdot 521^{2} + 147\cdot 521^{3} + 77\cdot 521^{4} + 424\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 87 + 126\cdot 521 + 130\cdot 521^{2} + 514\cdot 521^{3} + 478\cdot 521^{4} + 61\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 186 + 431\cdot 521 + 421\cdot 521^{2} + 367\cdot 521^{3} + 383\cdot 521^{4} + 347\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 310 + 465\cdot 521 + 313\cdot 521^{2} + 232\cdot 521^{3} + 220\cdot 521^{4} + 300\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 331 + 83\cdot 521 + 390\cdot 521^{2} + 495\cdot 521^{3} + 301\cdot 521^{4} + 164\cdot 521^{5} +O\left(521^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 495 + 420\cdot 521 + 464\cdot 521^{2} + 495\cdot 521^{3} + 183\cdot 521^{4} + 504\cdot 521^{5} +O\left(521^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(4,6)(5,7)$
$(1,2,5,4,3,8,7,6)$
$(2,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,8)(4,6)(5,7)$ $-4$
$2$ $2$ $(2,8)(4,6)$ $0$
$4$ $2$ $(4,6)(5,7)$ $0$
$4$ $2$ $(1,5)(2,4)(3,7)(6,8)$ $0$
$2$ $4$ $(1,5,3,7)(2,4,8,6)$ $0$
$2$ $4$ $(1,5,3,7)(2,6,8,4)$ $0$
$4$ $8$ $(1,2,5,4,3,8,7,6)$ $0$
$4$ $8$ $(1,4,7,2,3,6,5,8)$ $0$
$4$ $8$ $(1,2,5,6,3,8,7,4)$ $0$
$4$ $8$ $(1,6,7,2,3,4,5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.