Properties

Label 4.5e4_251e2.8t16.1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 251^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$39375625= 5^{4} \cdot 251^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 17 x^{6} + 26 x^{5} + 140 x^{4} - 119 x^{3} - 597 x^{2} + 158 x + 1441 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 27 + 61\cdot 181 + 137\cdot 181^{2} + 160\cdot 181^{3} + 54\cdot 181^{4} + 60\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 43 + 168\cdot 181 + 147\cdot 181^{2} + 19\cdot 181^{3} + 23\cdot 181^{4} + 176\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 56 + 19\cdot 181 + 70\cdot 181^{2} + 141\cdot 181^{3} + 48\cdot 181^{4} + 177\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 59 + 139\cdot 181 + 141\cdot 181^{2} + 141\cdot 181^{3} + 153\cdot 181^{4} + 71\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 81 + 141\cdot 181 + 159\cdot 181^{2} + 88\cdot 181^{3} + 72\cdot 181^{4} + 88\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 122 + 48\cdot 181 + 115\cdot 181^{2} + 71\cdot 181^{3} + 157\cdot 181^{4} + 112\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 158 + 51\cdot 181 + 39\cdot 181^{2} + 169\cdot 181^{3} + 100\cdot 181^{4} + 11\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 180 + 93\cdot 181 + 93\cdot 181^{2} + 111\cdot 181^{3} + 112\cdot 181^{4} + 25\cdot 181^{5} +O\left(181^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(5,8)$
$(1,8,6,2,7,5,3,4)$
$(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,4)(3,6)(5,8)$ $-4$
$2$ $2$ $(2,4)(5,8)$ $0$
$4$ $2$ $(2,4)(3,6)$ $0$
$4$ $2$ $(1,6)(2,8)(3,7)(4,5)$ $0$
$2$ $4$ $(1,6,7,3)(2,5,4,8)$ $0$
$2$ $4$ $(1,6,7,3)(2,8,4,5)$ $0$
$4$ $8$ $(1,8,6,2,7,5,3,4)$ $0$
$4$ $8$ $(1,2,3,8,7,4,6,5)$ $0$
$4$ $8$ $(1,8,6,4,7,5,3,2)$ $0$
$4$ $8$ $(1,4,3,8,7,2,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.