Properties

Label 4.5e4_211e2.8t16.1c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 211^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$27825625= 5^{4} \cdot 211^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 23 x^{6} - 36 x^{5} + 185 x^{4} - 141 x^{3} + 633 x^{2} - 188 x + 781 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 31 + 94\cdot 241 + 136\cdot 241^{2} + 69\cdot 241^{3} + 5\cdot 241^{4} + 45\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 49 + 181\cdot 241 + 52\cdot 241^{2} + 179\cdot 241^{3} + 222\cdot 241^{4} + 151\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 57 + 132\cdot 241 + 59\cdot 241^{2} + 207\cdot 241^{3} + 221\cdot 241^{4} + 159\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 157 + 233\cdot 241 + 146\cdot 241^{2} + 73\cdot 241^{3} + 209\cdot 241^{4} + 30\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 162 + 147\cdot 241 + 62\cdot 241^{2} + 11\cdot 241^{3} + 196\cdot 241^{4} + 220\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 167 + 12\cdot 241 + 154\cdot 241^{2} + 172\cdot 241^{3} + 163\cdot 241^{4} + 209\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 171 + 102\cdot 241 + 168\cdot 241^{2} + 70\cdot 241^{3} + 122\cdot 241^{4} + 46\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 173 + 59\cdot 241 + 183\cdot 241^{2} + 179\cdot 241^{3} + 63\cdot 241^{4} + 99\cdot 241^{5} +O\left(241^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,8,3,7,4,6)$
$(5,7)(6,8)$
$(1,2,3,4)(5,8,7,6)$
$(2,4)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,3)(2,4)(5,7)(6,8)$$-4$
$2$$2$$(5,7)(6,8)$$0$
$4$$2$$(2,4)(5,7)$$0$
$4$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$4$$(1,2,3,4)(5,8,7,6)$$0$
$2$$4$$(1,2,3,4)(5,6,7,8)$$0$
$4$$8$$(1,5,2,8,3,7,4,6)$$0$
$4$$8$$(1,8,4,5,3,6,2,7)$$0$
$4$$8$$(1,7,2,8,3,5,4,6)$$0$
$4$$8$$(1,8,4,7,3,6,2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.