Properties

Label 4.5e4_191e2.8t16.1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 191^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$22800625= 5^{4} \cdot 191^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 7 x^{6} - 9 x^{5} + 95 x^{4} + 46 x^{3} - 372 x^{2} - 232 x + 841 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 62 + 213\cdot 241 + 91\cdot 241^{2} + 9\cdot 241^{3} + 240\cdot 241^{4} + 193\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 76 + 112\cdot 241 + 193\cdot 241^{2} + 83\cdot 241^{3} + 136\cdot 241^{4} + 54\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 110 + 186\cdot 241 + 98\cdot 241^{2} + 63\cdot 241^{3} + 77\cdot 241^{4} + 218\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 117 + 22\cdot 241 + 94\cdot 241^{2} + 108\cdot 241^{3} + 64\cdot 241^{4} + 37\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 145 + 92\cdot 241 + 27\cdot 241^{2} + 241^{3} + 118\cdot 241^{4} +O\left(241^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 148 + 143\cdot 241 + 18\cdot 241^{2} + 6\cdot 241^{3} + 215\cdot 241^{4} + 120\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 149 + 39\cdot 241 + 171\cdot 241^{2} + 87\cdot 241^{3} + 53\cdot 241^{4} + 88\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 159 + 153\cdot 241 + 27\cdot 241^{2} + 122\cdot 241^{3} + 59\cdot 241^{4} + 9\cdot 241^{5} +O\left(241^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(5,8)(6,7)$
$(2,3)(5,8)$
$(1,4)(6,7)$
$(1,2,5,7,4,3,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-4$
$2$ $2$ $(2,3)(6,7)$ $0$
$4$ $2$ $(2,3)(5,8)$ $0$
$4$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $4$ $(1,5,4,8)(2,7,3,6)$ $0$
$2$ $4$ $(1,8,4,5)(2,7,3,6)$ $0$
$4$ $8$ $(1,2,5,7,4,3,8,6)$ $0$
$4$ $8$ $(1,7,8,2,4,6,5,3)$ $0$
$4$ $8$ $(1,2,8,7,4,3,5,6)$ $0$
$4$ $8$ $(1,7,5,2,4,6,8,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.