Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 311 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 + 261\cdot 311 + 225\cdot 311^{2} + 110\cdot 311^{3} + 119\cdot 311^{4} + 99\cdot 311^{5} +O\left(311^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 26 + 282\cdot 311 + 302\cdot 311^{2} + 12\cdot 311^{3} + 31\cdot 311^{4} + 137\cdot 311^{5} +O\left(311^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 32 + 201\cdot 311 + 305\cdot 311^{2} + 34\cdot 311^{3} + 234\cdot 311^{4} + 245\cdot 311^{5} +O\left(311^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 35 + 261\cdot 311 + 167\cdot 311^{2} + 106\cdot 311^{3} + 123\cdot 311^{4} + 148\cdot 311^{5} +O\left(311^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 37 + 133\cdot 311 + 91\cdot 311^{2} + 76\cdot 311^{3} + 49\cdot 311^{4} + 247\cdot 311^{5} +O\left(311^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 57 + 269\cdot 311 + 75\cdot 311^{2} + 65\cdot 311^{3} + 229\cdot 311^{4} + 112\cdot 311^{5} +O\left(311^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 188 + 201\cdot 311 + 72\cdot 311^{2} + 104\cdot 311^{3} + 35\cdot 311^{4} + 115\cdot 311^{5} +O\left(311^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 232 + 256\cdot 311 + 311^{2} + 111\cdot 311^{3} + 111\cdot 311^{4} + 138\cdot 311^{5} +O\left(311^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(3,6)(4,7)$ |
| $(1,2)(3,6)$ |
| $(1,5,2,8)(3,4,6,7)$ |
| $(4,7)(5,8)$ |
| $(1,4,8,3,2,7,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,2)(3,6)(4,7)(5,8)$ | $-4$ |
| $2$ | $2$ | $(3,6)(4,7)$ | $0$ |
| $4$ | $2$ | $(1,2)(3,6)$ | $0$ |
| $4$ | $2$ | $(1,5)(2,8)(3,4)(6,7)$ | $0$ |
| $2$ | $4$ | $(1,5,2,8)(3,4,6,7)$ | $0$ |
| $2$ | $4$ | $(1,5,2,8)(3,7,6,4)$ | $0$ |
| $4$ | $8$ | $(1,4,8,3,2,7,5,6)$ | $0$ |
| $4$ | $8$ | $(1,3,5,4,2,6,8,7)$ | $0$ |
| $4$ | $8$ | $(1,7,5,6,2,4,8,3)$ | $0$ |
| $4$ | $8$ | $(1,6,8,7,2,3,5,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.