Properties

Label 4.5e4_151e2.8t16.1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 151^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$14250625= 5^{4} \cdot 151^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 18 x^{6} - 39 x^{5} + 140 x^{4} - 219 x^{3} + 453 x^{2} - 382 x + 451 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 17 + 261\cdot 311 + 225\cdot 311^{2} + 110\cdot 311^{3} + 119\cdot 311^{4} + 99\cdot 311^{5} +O\left(311^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 26 + 282\cdot 311 + 302\cdot 311^{2} + 12\cdot 311^{3} + 31\cdot 311^{4} + 137\cdot 311^{5} +O\left(311^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 32 + 201\cdot 311 + 305\cdot 311^{2} + 34\cdot 311^{3} + 234\cdot 311^{4} + 245\cdot 311^{5} +O\left(311^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 35 + 261\cdot 311 + 167\cdot 311^{2} + 106\cdot 311^{3} + 123\cdot 311^{4} + 148\cdot 311^{5} +O\left(311^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 37 + 133\cdot 311 + 91\cdot 311^{2} + 76\cdot 311^{3} + 49\cdot 311^{4} + 247\cdot 311^{5} +O\left(311^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 57 + 269\cdot 311 + 75\cdot 311^{2} + 65\cdot 311^{3} + 229\cdot 311^{4} + 112\cdot 311^{5} +O\left(311^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 188 + 201\cdot 311 + 72\cdot 311^{2} + 104\cdot 311^{3} + 35\cdot 311^{4} + 115\cdot 311^{5} +O\left(311^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 232 + 256\cdot 311 + 311^{2} + 111\cdot 311^{3} + 111\cdot 311^{4} + 138\cdot 311^{5} +O\left(311^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(4,7)$
$(1,2)(3,6)$
$(1,5,2,8)(3,4,6,7)$
$(4,7)(5,8)$
$(1,4,8,3,2,7,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,6)(4,7)(5,8)$ $-4$
$2$ $2$ $(3,6)(4,7)$ $0$
$4$ $2$ $(1,2)(3,6)$ $0$
$4$ $2$ $(1,5)(2,8)(3,4)(6,7)$ $0$
$2$ $4$ $(1,5,2,8)(3,4,6,7)$ $0$
$2$ $4$ $(1,5,2,8)(3,7,6,4)$ $0$
$4$ $8$ $(1,4,8,3,2,7,5,6)$ $0$
$4$ $8$ $(1,3,5,4,2,6,8,7)$ $0$
$4$ $8$ $(1,7,5,6,2,4,8,3)$ $0$
$4$ $8$ $(1,6,8,7,2,3,5,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.