Properties

Label 4.5e4_131e2.8t16.1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 131^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$10725625= 5^{4} \cdot 131^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 7 x^{6} - 4 x^{5} + 70 x^{4} + 41 x^{3} - 287 x^{2} - 62 x + 401 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 271 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 90 + 160\cdot 271 + 188\cdot 271^{2} + 65\cdot 271^{3} + 264\cdot 271^{4} + 138\cdot 271^{5} +O\left(271^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 108 + 196\cdot 271 + 211\cdot 271^{2} + 101\cdot 271^{3} + 91\cdot 271^{4} + 248\cdot 271^{5} +O\left(271^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 114 + 171\cdot 271 + 50\cdot 271^{2} + 228\cdot 271^{3} + 48\cdot 271^{4} + 107\cdot 271^{5} +O\left(271^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 138 + 7\cdot 271 + 53\cdot 271^{2} + 180\cdot 271^{3} + 202\cdot 271^{4} + 87\cdot 271^{5} +O\left(271^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 190 + 9\cdot 271 + 77\cdot 271^{2} + 141\cdot 271^{3} + 117\cdot 271^{4} + 247\cdot 271^{5} +O\left(271^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 231 + 13\cdot 271 + 91\cdot 271^{2} + 146\cdot 271^{3} + 137\cdot 271^{4} + 47\cdot 271^{5} +O\left(271^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 242 + 40\cdot 271 + 245\cdot 271^{2} + 52\cdot 271^{3} + 122\cdot 271^{4} + 49\cdot 271^{5} +O\left(271^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 244 + 212\cdot 271 + 166\cdot 271^{2} + 167\cdot 271^{3} + 99\cdot 271^{4} + 157\cdot 271^{5} +O\left(271^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(5,7)$
$(4,8)(5,7)$
$(3,6)(5,7)$
$(1,8,3,5,2,4,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,6)(4,8)(5,7)$ $-4$
$2$ $2$ $(4,8)(5,7)$ $0$
$4$ $2$ $(3,6)(5,7)$ $0$
$4$ $2$ $(1,3)(2,6)(4,7)(5,8)$ $0$
$2$ $4$ $(1,3,2,6)(4,7,8,5)$ $0$
$2$ $4$ $(1,3,2,6)(4,5,8,7)$ $0$
$4$ $8$ $(1,8,3,5,2,4,6,7)$ $0$
$4$ $8$ $(1,5,6,8,2,7,3,4)$ $0$
$4$ $8$ $(1,8,3,7,2,4,6,5)$ $0$
$4$ $8$ $(1,7,6,8,2,5,3,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.