Properties

Label 4.5e4_11e2_41e2.8t16.9
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$127125625= 5^{4} \cdot 11^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 27 x^{6} + 41 x^{5} + 315 x^{4} - 344 x^{3} - 1747 x^{2} + 1073 x + 4331 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 661 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 22 + 324\cdot 661 + 280\cdot 661^{2} + 368\cdot 661^{3} + 57\cdot 661^{4} + 37\cdot 661^{5} +O\left(661^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 237 + 365\cdot 661 + 18\cdot 661^{2} + 437\cdot 661^{3} + 104\cdot 661^{4} + 247\cdot 661^{5} +O\left(661^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 274 + 636\cdot 661 + 659\cdot 661^{2} + 21\cdot 661^{3} + 66\cdot 661^{4} + 133\cdot 661^{5} +O\left(661^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 380 + 252\cdot 661 + 623\cdot 661^{2} + 636\cdot 661^{3} + 629\cdot 661^{4} + 584\cdot 661^{5} +O\left(661^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 423 + 313\cdot 661 + 379\cdot 661^{2} + 407\cdot 661^{3} + 548\cdot 661^{4} + 398\cdot 661^{5} +O\left(661^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 431 + 467\cdot 661 + 477\cdot 661^{2} + 398\cdot 661^{3} + 281\cdot 661^{4} + 582\cdot 661^{5} +O\left(661^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 432 + 67\cdot 661 + 20\cdot 661^{2} + 226\cdot 661^{3} + 521\cdot 661^{4} + 356\cdot 661^{5} +O\left(661^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 447 + 216\cdot 661 + 184\cdot 661^{2} + 147\cdot 661^{3} + 434\cdot 661^{4} + 303\cdot 661^{5} +O\left(661^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,7)(6,8)$
$(1,2,8,3,5,7,6,4)$
$(3,4)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,7)(3,4)(6,8)$ $-4$
$2$ $2$ $(2,7)(3,4)$ $0$
$4$ $2$ $(2,7)(6,8)$ $0$
$4$ $2$ $(1,8)(2,4)(3,7)(5,6)$ $0$
$2$ $4$ $(1,8,5,6)(2,3,7,4)$ $0$
$2$ $4$ $(1,6,5,8)(2,3,7,4)$ $0$
$4$ $8$ $(1,2,8,3,5,7,6,4)$ $0$
$4$ $8$ $(1,3,6,2,5,4,8,7)$ $0$
$4$ $8$ $(1,2,6,3,5,7,8,4)$ $0$
$4$ $8$ $(1,3,8,2,5,4,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.