Properties

Label 4.5e4_11e2_41e2.8t16.8c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2} \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$127125625= 5^{4} \cdot 11^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 27 x^{6} + 56 x^{5} + 310 x^{4} - 499 x^{3} - 1787 x^{2} + 1438 x + 4201 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 401 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 19 + 275\cdot 401 + 138\cdot 401^{2} + 159\cdot 401^{3} + 214\cdot 401^{4} + 109\cdot 401^{5} +O\left(401^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 87 + 165\cdot 401 + 153\cdot 401^{2} + 249\cdot 401^{3} + 97\cdot 401^{4} + 335\cdot 401^{5} +O\left(401^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 109 + 244\cdot 401 + 182\cdot 401^{2} + 43\cdot 401^{3} + 293\cdot 401^{4} + 28\cdot 401^{5} +O\left(401^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 132 + 185\cdot 401 + 335\cdot 401^{2} + 87\cdot 401^{3} + 78\cdot 401^{4} + 365\cdot 401^{5} +O\left(401^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 271 + 56\cdot 401 + 115\cdot 401^{2} + 292\cdot 401^{3} + 158\cdot 401^{4} + 263\cdot 401^{5} +O\left(401^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 280 + 237\cdot 401 + 87\cdot 401^{2} + 104\cdot 401^{3} + 26\cdot 401^{4} + 168\cdot 401^{5} +O\left(401^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 336 + 335\cdot 401 + 350\cdot 401^{2} + 216\cdot 401^{3} + 252\cdot 401^{4} + 174\cdot 401^{5} +O\left(401^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 372 + 103\cdot 401 + 240\cdot 401^{2} + 49\cdot 401^{3} + 82\cdot 401^{4} + 159\cdot 401^{5} +O\left(401^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5)(4,6)$
$(1,5,4,7,8,2,6,3)$
$(3,7)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,5)(3,7)(4,6)$$-4$
$2$$2$$(2,5)(3,7)$$0$
$4$$2$$(2,5)(4,6)$$0$
$4$$2$$(1,4)(2,7)(3,5)(6,8)$$0$
$2$$4$$(1,4,8,6)(2,3,5,7)$$0$
$2$$4$$(1,6,8,4)(2,3,5,7)$$0$
$4$$8$$(1,5,4,7,8,2,6,3)$$0$
$4$$8$$(1,7,6,5,8,3,4,2)$$0$
$4$$8$$(1,5,6,7,8,2,4,3)$$0$
$4$$8$$(1,7,4,5,8,3,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.