Properties

Label 4.5e4_11e2_41e2.8t16.7
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$127125625= 5^{4} \cdot 11^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 27 x^{6} + 59 x^{5} + 315 x^{4} - 421 x^{3} - 1772 x^{2} + 1142 x + 4061 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 20\cdot 31 + 21\cdot 31^{2} + 28\cdot 31^{3} + 31^{4} + 11\cdot 31^{5} + 24\cdot 31^{6} + 13\cdot 31^{7} + 18\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 2 + 10\cdot 31^{2} + 28\cdot 31^{3} + 6\cdot 31^{4} + 29\cdot 31^{5} + 19\cdot 31^{6} + 21\cdot 31^{7} + 19\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 3 + 17\cdot 31 + 24\cdot 31^{2} + 4\cdot 31^{3} + 8\cdot 31^{4} + 6\cdot 31^{5} + 4\cdot 31^{6} + 19\cdot 31^{7} + 4\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 8 + 31 + 21\cdot 31^{2} + 28\cdot 31^{3} + 9\cdot 31^{4} + 24\cdot 31^{5} + 10\cdot 31^{7} + 15\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 15 + 30\cdot 31 + 23\cdot 31^{2} + 28\cdot 31^{3} + 6\cdot 31^{4} + 14\cdot 31^{5} + 27\cdot 31^{6} + 28\cdot 31^{7} + 25\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 17 + 23\cdot 31 + 16\cdot 31^{2} + 6\cdot 31^{3} + 13\cdot 31^{4} + 22\cdot 31^{5} + 12\cdot 31^{6} + 11\cdot 31^{7} + 28\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 25 + 20\cdot 31 + 15\cdot 31^{2} + 8\cdot 31^{4} + 21\cdot 31^{5} + 20\cdot 31^{6} + 24\cdot 31^{7} + 19\cdot 31^{8} +O\left(31^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 26 + 10\cdot 31 + 21\cdot 31^{2} + 28\cdot 31^{3} + 6\cdot 31^{4} + 26\cdot 31^{5} + 13\cdot 31^{6} + 25\cdot 31^{7} + 22\cdot 31^{8} +O\left(31^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,6,4)(2,5,3,7)$
$(2,3)(5,7)$
$(4,8)(5,7)$
$(1,7,8,3,6,5,4,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,6)(2,3)(4,8)(5,7)$ $-4$
$2$ $2$ $(2,3)(5,7)$ $0$
$4$ $2$ $(4,8)(5,7)$ $0$
$4$ $2$ $(1,8)(2,5)(3,7)(4,6)$ $0$
$2$ $4$ $(1,8,6,4)(2,5,3,7)$ $0$
$2$ $4$ $(1,8,6,4)(2,7,3,5)$ $0$
$4$ $8$ $(1,7,8,3,6,5,4,2)$ $0$
$4$ $8$ $(1,3,4,7,6,2,8,5)$ $0$
$4$ $8$ $(1,7,4,3,6,5,8,2)$ $0$
$4$ $8$ $(1,3,8,7,6,2,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.