Properties

Label 4.5e4_11e2_41e2.8t16.5
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$127125625= 5^{4} \cdot 11^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 27 x^{6} + 64 x^{5} + 310 x^{4} - 486 x^{3} - 1722 x^{2} + 1237 x + 3931 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 19 + 69\cdot 181 + 52\cdot 181^{2} + 46\cdot 181^{3} + 84\cdot 181^{4} + 33\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 23 + 48\cdot 181 + 36\cdot 181^{2} + 118\cdot 181^{3} + 25\cdot 181^{4} + 60\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 41 + 84\cdot 181 + 124\cdot 181^{2} + 100\cdot 181^{3} + 7\cdot 181^{4} + 46\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 102 + 81\cdot 181 + 139\cdot 181^{2} + 120\cdot 181^{3} + 69\cdot 181^{4} + 155\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 103 + 92\cdot 181 + 144\cdot 181^{2} + 64\cdot 181^{3} + 38\cdot 181^{4} + 113\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 122 + 72\cdot 181 + 154\cdot 181^{2} + 74\cdot 181^{3} + 15\cdot 181^{4} + 13\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 154 + 161\cdot 181 + 124\cdot 181^{2} + 153\cdot 181^{3} + 87\cdot 181^{4} + 50\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 163 + 113\cdot 181 + 128\cdot 181^{2} + 44\cdot 181^{3} + 33\cdot 181^{4} + 71\cdot 181^{5} +O\left(181^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(4,6)(7,8)$
$(1,5,8,6,3,2,7,4)$
$(2,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,5)(4,6)(7,8)$ $-4$
$2$ $2$ $(2,5)(4,6)$ $0$
$4$ $2$ $(4,6)(7,8)$ $0$
$4$ $2$ $(1,8)(2,4)(3,7)(5,6)$ $0$
$2$ $4$ $(1,8,3,7)(2,4,5,6)$ $0$
$2$ $4$ $(1,8,3,7)(2,6,5,4)$ $0$
$4$ $8$ $(1,5,8,6,3,2,7,4)$ $0$
$4$ $8$ $(1,6,7,5,3,4,8,2)$ $0$
$4$ $8$ $(1,5,8,4,3,2,7,6)$ $0$
$4$ $8$ $(1,4,7,5,3,6,8,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.