Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 211 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 + 142\cdot 211 + 77\cdot 211^{2} + 65\cdot 211^{3} + 51\cdot 211^{4} + 109\cdot 211^{5} + 137\cdot 211^{6} + 208\cdot 211^{7} +O\left(211^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 + 185\cdot 211 + 75\cdot 211^{2} + 176\cdot 211^{3} + 124\cdot 211^{4} + 93\cdot 211^{5} + 178\cdot 211^{6} + 67\cdot 211^{7} +O\left(211^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 22 + 172\cdot 211 + 118\cdot 211^{2} + 18\cdot 211^{3} + 37\cdot 211^{4} + 167\cdot 211^{5} + 61\cdot 211^{6} + 153\cdot 211^{7} +O\left(211^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 52 + 200\cdot 211 + 155\cdot 211^{2} + 90\cdot 211^{3} + 54\cdot 211^{4} + 145\cdot 211^{5} + 145\cdot 211^{6} + 71\cdot 211^{7} +O\left(211^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 62 + 50\cdot 211 + 191\cdot 211^{2} + 55\cdot 211^{3} + 29\cdot 211^{4} + 175\cdot 211^{5} + 34\cdot 211^{6} + 182\cdot 211^{7} +O\left(211^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 117 + 14\cdot 211 + 36\cdot 211^{2} + 171\cdot 211^{3} + 19\cdot 211^{4} + 197\cdot 211^{5} + 146\cdot 211^{6} + 18\cdot 211^{7} +O\left(211^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 169 + 133\cdot 211 + 149\cdot 211^{2} + 161\cdot 211^{3} + 208\cdot 211^{4} + 51\cdot 211^{5} + 44\cdot 211^{6} + 203\cdot 211^{7} +O\left(211^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 192 + 156\cdot 211 + 38\cdot 211^{2} + 104\cdot 211^{3} + 107\cdot 211^{4} + 115\cdot 211^{5} + 94\cdot 211^{6} + 149\cdot 211^{7} +O\left(211^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,5,8,7,3,6,4)$ |
| $(2,3)(5,6)$ |
| $(4,8)(5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,7)(2,3)(4,8)(5,6)$ | $-4$ |
| $2$ | $2$ | $(2,3)(4,8)$ | $0$ |
| $4$ | $2$ | $(2,3)(5,6)$ | $0$ |
| $4$ | $2$ | $(1,5)(2,4)(3,8)(6,7)$ | $0$ |
| $2$ | $4$ | $(1,5,7,6)(2,8,3,4)$ | $0$ |
| $2$ | $4$ | $(1,6,7,5)(2,8,3,4)$ | $0$ |
| $4$ | $8$ | $(1,2,5,8,7,3,6,4)$ | $0$ |
| $4$ | $8$ | $(1,8,6,2,7,4,5,3)$ | $0$ |
| $4$ | $8$ | $(1,2,6,8,7,3,5,4)$ | $0$ |
| $4$ | $8$ | $(1,8,5,2,7,4,6,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.