Properties

Label 4.5e4_11e2_31e2.8t16.8
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2} \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$72675625= 5^{4} \cdot 11^{2} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 8 x^{6} + 27 x^{5} - 80 x^{4} - 12 x^{3} + 622 x^{2} - 789 x + 2441 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 14 + 94\cdot 181 + 33\cdot 181^{2} + 108\cdot 181^{3} + 46\cdot 181^{4} +O\left(181^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 + 176\cdot 181 + 13\cdot 181^{2} + 64\cdot 181^{3} + 31\cdot 181^{4} + 108\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 30 + 91\cdot 181 + 94\cdot 181^{2} + 99\cdot 181^{3} + 28\cdot 181^{4} + 132\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 34 + 48\cdot 181 + 49\cdot 181^{2} + 77\cdot 181^{3} + 16\cdot 181^{4} + 73\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 82 + 42\cdot 181 + 97\cdot 181^{2} + 129\cdot 181^{4} + 81\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 105 + 159\cdot 181 + 18\cdot 181^{2} + 89\cdot 181^{3} + 79\cdot 181^{4} + 120\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 108 + 114\cdot 181 + 151\cdot 181^{2} + 106\cdot 181^{3} + 42\cdot 181^{4} + 101\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 155 + 178\cdot 181 + 83\cdot 181^{2} + 178\cdot 181^{3} + 168\cdot 181^{4} + 106\cdot 181^{5} +O\left(181^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,2,5,7,6,3,8)$
$(2,3)(5,8)$
$(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,3)(4,6)(5,8)$ $-4$
$2$ $2$ $(4,6)(5,8)$ $0$
$4$ $2$ $(2,3)(5,8)$ $0$
$4$ $2$ $(1,2)(3,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,2,7,3)(4,5,6,8)$ $0$
$2$ $4$ $(1,2,7,3)(4,8,6,5)$ $0$
$4$ $8$ $(1,4,2,5,7,6,3,8)$ $0$
$4$ $8$ $(1,5,3,4,7,8,2,6)$ $0$
$4$ $8$ $(1,4,2,8,7,6,3,5)$ $0$
$4$ $8$ $(1,8,3,4,7,5,2,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.