Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 101 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 + 23\cdot 101 + 29\cdot 101^{2} + 43\cdot 101^{3} + 72\cdot 101^{4} + 47\cdot 101^{5} + 10\cdot 101^{6} +O\left(101^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 26 + 15\cdot 101 + 40\cdot 101^{2} + 81\cdot 101^{3} + 69\cdot 101^{4} + 51\cdot 101^{5} + 99\cdot 101^{6} +O\left(101^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 39 + 67\cdot 101 + 89\cdot 101^{2} + 4\cdot 101^{3} + 7\cdot 101^{4} + 24\cdot 101^{5} + 79\cdot 101^{6} +O\left(101^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 48 + 27\cdot 101 + 25\cdot 101^{2} + 37\cdot 101^{3} + 27\cdot 101^{4} + 79\cdot 101^{5} + 4\cdot 101^{6} +O\left(101^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 54 + 89\cdot 101 + 90\cdot 101^{2} + 93\cdot 101^{3} + 55\cdot 101^{4} + 100\cdot 101^{5} + 95\cdot 101^{6} +O\left(101^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 64 + 15\cdot 101 + 44\cdot 101^{2} + 89\cdot 101^{3} + 66\cdot 101^{4} + 94\cdot 101^{5} + 11\cdot 101^{6} +O\left(101^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 67 + 35\cdot 101 + 13\cdot 101^{2} + 22\cdot 101^{3} + 42\cdot 101^{4} + 45\cdot 101^{5} + 90\cdot 101^{6} +O\left(101^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 92 + 28\cdot 101 + 71\cdot 101^{2} + 31\cdot 101^{3} + 62\cdot 101^{4} + 61\cdot 101^{5} + 11\cdot 101^{6} +O\left(101^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(4,7)(5,6)$ |
| $(1,4,5,2,8,7,6,3)$ |
| $(2,3)(5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,3)(4,7)(5,6)$ |
$-4$ |
| $2$ |
$2$ |
$(2,3)(4,7)$ |
$0$ |
| $4$ |
$2$ |
$(4,7)(5,6)$ |
$0$ |
| $4$ |
$2$ |
$(1,5)(2,7)(3,4)(6,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,8,6)(2,7,3,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,8,5)(2,7,3,4)$ |
$0$ |
| $4$ |
$8$ |
$(1,4,5,2,8,7,6,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,2,6,4,8,3,5,7)$ |
$0$ |
| $4$ |
$8$ |
$(1,4,6,2,8,7,5,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,2,5,4,8,3,6,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.