Properties

Label 4.5e4_11e2_31e2.8t16.6c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$72675625= 5^{4} \cdot 11^{2} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 23 x^{6} - 31 x^{5} + 200 x^{4} - 176 x^{3} + 1073 x^{2} - 373 x + 2141 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 6 + 17\cdot 71 + 27\cdot 71^{2} + 11\cdot 71^{3} + 11\cdot 71^{4} + 56\cdot 71^{5} + 27\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 19 + 28\cdot 71 + 25\cdot 71^{2} + 43\cdot 71^{3} + 62\cdot 71^{4} + 56\cdot 71^{5} + 23\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 24 + 6\cdot 71 + 49\cdot 71^{2} + 50\cdot 71^{3} + 66\cdot 71^{4} + 69\cdot 71^{5} + 27\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 34 + 12\cdot 71 + 26\cdot 71^{2} + 49\cdot 71^{3} + 67\cdot 71^{4} + 41\cdot 71^{5} + 23\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 40 + 20\cdot 71 + 61\cdot 71^{2} + 62\cdot 71^{3} + 26\cdot 71^{4} + 61\cdot 71^{5} + 66\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 49 + 21\cdot 71 + 71^{2} + 42\cdot 71^{3} + 43\cdot 71^{4} + 20\cdot 71^{5} + 10\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 57 + 36\cdot 71 + 65\cdot 71^{2} + 32\cdot 71^{3} + 33\cdot 71^{4} + 9\cdot 71^{5} + 67\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 58 + 69\cdot 71 + 27\cdot 71^{2} + 62\cdot 71^{3} + 42\cdot 71^{4} + 38\cdot 71^{5} + 36\cdot 71^{6} +O\left(71^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,4)(5,7)$
$(1,8,7,4,6,2,5,3)$
$(1,7,6,5)(2,3,8,4)$
$(2,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,8)(3,4)(5,7)$$-4$
$2$$2$$(2,8)(3,4)$$0$
$4$$2$$(3,4)(5,7)$$0$
$4$$2$$(1,7)(2,3)(4,8)(5,6)$$0$
$2$$4$$(1,7,6,5)(2,3,8,4)$$0$
$2$$4$$(1,7,6,5)(2,4,8,3)$$0$
$4$$8$$(1,8,7,4,6,2,5,3)$$0$
$4$$8$$(1,4,5,8,6,3,7,2)$$0$
$4$$8$$(1,2,7,4,6,8,5,3)$$0$
$4$$8$$(1,4,5,2,6,3,7,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.