Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 71 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 + 17\cdot 71 + 27\cdot 71^{2} + 11\cdot 71^{3} + 11\cdot 71^{4} + 56\cdot 71^{5} + 27\cdot 71^{6} +O\left(71^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 19 + 28\cdot 71 + 25\cdot 71^{2} + 43\cdot 71^{3} + 62\cdot 71^{4} + 56\cdot 71^{5} + 23\cdot 71^{6} +O\left(71^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 24 + 6\cdot 71 + 49\cdot 71^{2} + 50\cdot 71^{3} + 66\cdot 71^{4} + 69\cdot 71^{5} + 27\cdot 71^{6} +O\left(71^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 34 + 12\cdot 71 + 26\cdot 71^{2} + 49\cdot 71^{3} + 67\cdot 71^{4} + 41\cdot 71^{5} + 23\cdot 71^{6} +O\left(71^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 40 + 20\cdot 71 + 61\cdot 71^{2} + 62\cdot 71^{3} + 26\cdot 71^{4} + 61\cdot 71^{5} + 66\cdot 71^{6} +O\left(71^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 49 + 21\cdot 71 + 71^{2} + 42\cdot 71^{3} + 43\cdot 71^{4} + 20\cdot 71^{5} + 10\cdot 71^{6} +O\left(71^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 57 + 36\cdot 71 + 65\cdot 71^{2} + 32\cdot 71^{3} + 33\cdot 71^{4} + 9\cdot 71^{5} + 67\cdot 71^{6} +O\left(71^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 58 + 69\cdot 71 + 27\cdot 71^{2} + 62\cdot 71^{3} + 42\cdot 71^{4} + 38\cdot 71^{5} + 36\cdot 71^{6} +O\left(71^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(3,4)(5,7)$ |
| $(1,8,7,4,6,2,5,3)$ |
| $(1,7,6,5)(2,3,8,4)$ |
| $(2,8)(5,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,6)(2,8)(3,4)(5,7)$ |
$-4$ |
| $2$ |
$2$ |
$(2,8)(3,4)$ |
$0$ |
| $4$ |
$2$ |
$(3,4)(5,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,3)(4,8)(5,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,6,5)(2,3,8,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,6,5)(2,4,8,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,8,7,4,6,2,5,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,4,5,8,6,3,7,2)$ |
$0$ |
| $4$ |
$8$ |
$(1,2,7,4,6,8,5,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,4,5,2,6,3,7,8)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.