Properties

Label 4.5e4_11e2_31e2.8t16.5
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2} \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$72675625= 5^{4} \cdot 11^{2} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 28 x^{6} - 39 x^{5} + 305 x^{4} - 239 x^{3} + 1338 x^{2} - 132 x + 1721 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 29 + 41\cdot 131 + 34\cdot 131^{2} + 108\cdot 131^{3} + 49\cdot 131^{4} + 78\cdot 131^{5} + 97\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 34 + 66\cdot 131 + 115\cdot 131^{2} + 82\cdot 131^{3} + 59\cdot 131^{4} + 30\cdot 131^{5} + 74\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 39 + 69\cdot 131 + 78\cdot 131^{2} + 122\cdot 131^{3} + 3\cdot 131^{4} + 87\cdot 131^{5} + 88\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 46 + 116\cdot 131 + 95\cdot 131^{2} + 84\cdot 131^{3} + 112\cdot 131^{4} + 109\cdot 131^{5} + 30\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 76 + 35\cdot 131 + 78\cdot 131^{2} + 62\cdot 131^{3} + 75\cdot 131^{4} + 96\cdot 131^{5} + 111\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 83 + 7\cdot 131 + 63\cdot 131^{2} + 45\cdot 131^{3} + 69\cdot 131^{4} + 5\cdot 131^{5} + 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 102 + 40\cdot 131 + 9\cdot 131^{2} + 123\cdot 131^{3} + 69\cdot 131^{4} + 99\cdot 131^{5} + 30\cdot 131^{6} +O\left(131^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 117 + 15\cdot 131 + 49\cdot 131^{2} + 25\cdot 131^{3} + 83\cdot 131^{4} + 16\cdot 131^{5} + 89\cdot 131^{6} +O\left(131^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,2,5,6,7,8,3)$
$(2,8)(3,5)$
$(3,5)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,6)(2,8)(3,5)(4,7)$ $-4$
$2$ $2$ $(3,5)(4,7)$ $0$
$4$ $2$ $(2,8)(3,5)$ $0$
$4$ $2$ $(1,2)(3,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,2,6,8)(3,4,5,7)$ $0$
$2$ $4$ $(1,2,6,8)(3,7,5,4)$ $0$
$4$ $8$ $(1,4,2,5,6,7,8,3)$ $0$
$4$ $8$ $(1,5,8,4,6,3,2,7)$ $0$
$4$ $8$ $(1,4,2,3,6,7,8,5)$ $0$
$4$ $8$ $(1,3,8,4,6,5,2,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.