Properties

Label 4.5e4_11e2_29e2.8t16.4
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2} \cdot 29^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$63600625= 5^{4} \cdot 11^{2} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 33 x^{6} - 71 x^{5} + 370 x^{4} - 546 x^{3} + 1653 x^{2} - 1313 x + 2131 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 4 + 40\cdot 71 + 9\cdot 71^{2} + 66\cdot 71^{3} + 17\cdot 71^{4} + 17\cdot 71^{5} + 71^{6} + 66\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 21 + 12\cdot 71 + 56\cdot 71^{2} + 42\cdot 71^{3} + 67\cdot 71^{4} + 53\cdot 71^{5} + 51\cdot 71^{6} + 38\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 22 + 17\cdot 71 + 46\cdot 71^{2} + 29\cdot 71^{3} + 42\cdot 71^{4} + 53\cdot 71^{5} + 61\cdot 71^{6} + 39\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 23 + 19\cdot 71 + 28\cdot 71^{2} + 49\cdot 71^{3} + 51\cdot 71^{4} + 50\cdot 71^{5} + 30\cdot 71^{6} + 22\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 30 + 64\cdot 71 + 48\cdot 71^{2} + 59\cdot 71^{3} + 38\cdot 71^{4} + 32\cdot 71^{5} + 56\cdot 71^{6} + 23\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 32 + 19\cdot 71 + 4\cdot 71^{3} + 3\cdot 71^{4} + 26\cdot 71^{5} + 7\cdot 71^{6} + 64\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 37 + 6\cdot 71 + 19\cdot 71^{2} + 57\cdot 71^{3} + 66\cdot 71^{4} + 57\cdot 71^{5} + 70\cdot 71^{6} + 43\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 47 + 33\cdot 71 + 4\cdot 71^{2} + 46\cdot 71^{3} + 66\cdot 71^{4} + 62\cdot 71^{5} + 3\cdot 71^{6} + 56\cdot 71^{7} +O\left(71^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,6,5,3,2,4,8)$
$(4,6)(5,8)$
$(2,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,7)(4,6)(5,8)$ $-4$
$2$ $2$ $(2,7)(5,8)$ $0$
$4$ $2$ $(4,6)(5,8)$ $0$
$4$ $2$ $(1,6)(2,8)(3,4)(5,7)$ $0$
$2$ $4$ $(1,6,3,4)(2,8,7,5)$ $0$
$2$ $4$ $(1,6,3,4)(2,5,7,8)$ $0$
$4$ $8$ $(1,7,6,5,3,2,4,8)$ $0$
$4$ $8$ $(1,5,4,7,3,8,6,2)$ $0$
$4$ $8$ $(1,7,6,8,3,2,4,5)$ $0$
$4$ $8$ $(1,8,4,7,3,5,6,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.