Properties

Label 4.5e4_11e2_29e2.8t16.3c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2} \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$63600625= 5^{4} \cdot 11^{2} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 27 x^{6} - 23 x^{5} + 275 x^{4} - 172 x^{3} + 1207 x^{2} - 404 x + 1891 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 32 + 124\cdot 191 + 33\cdot 191^{2} + 120\cdot 191^{3} + 152\cdot 191^{4} + 25\cdot 191^{5} +O\left(191^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 36 + 111\cdot 191 + 110\cdot 191^{2} + 90\cdot 191^{3} + 136\cdot 191^{4} + 73\cdot 191^{5} +O\left(191^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 65 + 164\cdot 191 + 127\cdot 191^{2} + 153\cdot 191^{3} + 100\cdot 191^{4} + 4\cdot 191^{5} +O\left(191^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 77 + 173\cdot 191 + 55\cdot 191^{2} + 20\cdot 191^{3} + 43\cdot 191^{4} + 7\cdot 191^{5} +O\left(191^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 116 + 161\cdot 191 + 10\cdot 191^{3} + 82\cdot 191^{4} + 146\cdot 191^{5} +O\left(191^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 129 + 64\cdot 191 + 164\cdot 191^{2} + 47\cdot 191^{3} + 23\cdot 191^{4} + 90\cdot 191^{5} +O\left(191^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 144 + 3\cdot 191 + 56\cdot 191^{2} + 139\cdot 191^{3} + 116\cdot 191^{4} + 117\cdot 191^{5} +O\left(191^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 166 + 151\cdot 191 + 23\cdot 191^{2} + 182\cdot 191^{3} + 108\cdot 191^{4} + 107\cdot 191^{5} +O\left(191^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,4)(6,7)$
$(1,3,7,2,8,4,6,5)$
$(2,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,5)(3,4)(6,7)$$-4$
$2$$2$$(2,5)(3,4)$$0$
$4$$2$$(2,5)(6,7)$$0$
$4$$2$$(1,7)(2,3)(4,5)(6,8)$$0$
$2$$4$$(1,7,8,6)(2,4,5,3)$$0$
$2$$4$$(1,7,8,6)(2,3,5,4)$$0$
$4$$8$$(1,3,7,2,8,4,6,5)$$0$
$4$$8$$(1,2,6,3,8,5,7,4)$$0$
$4$$8$$(1,3,7,5,8,4,6,2)$$0$
$4$$8$$(1,5,6,3,8,2,7,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.