Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 251 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 19 + 171\cdot 251 + 225\cdot 251^{2} + 178\cdot 251^{3} + 16\cdot 251^{4} + 220\cdot 251^{5} +O\left(251^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 40 + 75\cdot 251 + 239\cdot 251^{2} + 112\cdot 251^{3} + 176\cdot 251^{4} + 118\cdot 251^{5} +O\left(251^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 75 + 14\cdot 251 + 250\cdot 251^{2} + 175\cdot 251^{3} + 174\cdot 251^{4} + 211\cdot 251^{5} +O\left(251^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 119 + 213\cdot 251 + 91\cdot 251^{2} + 82\cdot 251^{3} + 13\cdot 251^{4} + 18\cdot 251^{5} +O\left(251^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 136 + 214\cdot 251 + 194\cdot 251^{2} + 190\cdot 251^{3} + 18\cdot 251^{4} + 14\cdot 251^{5} +O\left(251^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 156 + 28\cdot 251 + 140\cdot 251^{2} + 14\cdot 251^{3} + 91\cdot 251^{4} + 136\cdot 251^{5} +O\left(251^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 217 + 248\cdot 251 + 8\cdot 251^{2} + 239\cdot 251^{3} + 2\cdot 251^{4} + 153\cdot 251^{5} +O\left(251^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 243 + 37\cdot 251 + 104\cdot 251^{2} + 9\cdot 251^{3} + 8\cdot 251^{4} + 132\cdot 251^{5} +O\left(251^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(3,6)(5,7)$ |
| $(1,6,4,3)(2,7,8,5)$ |
| $(1,5,3,8,4,7,6,2)$ |
| $(1,4)(2,8)$ |
| $(2,8)(5,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,4)(2,8)(3,6)(5,7)$ | $-4$ |
| $2$ | $2$ | $(2,8)(5,7)$ | $0$ |
| $4$ | $2$ | $(1,4)(2,8)$ | $0$ |
| $4$ | $2$ | $(1,6)(2,7)(3,4)(5,8)$ | $0$ |
| $2$ | $4$ | $(1,6,4,3)(2,7,8,5)$ | $0$ |
| $2$ | $4$ | $(1,6,4,3)(2,5,8,7)$ | $0$ |
| $4$ | $8$ | $(1,5,3,8,4,7,6,2)$ | $0$ |
| $4$ | $8$ | $(1,8,6,5,4,2,3,7)$ | $0$ |
| $4$ | $8$ | $(1,7,6,2,4,5,3,8)$ | $0$ |
| $4$ | $8$ | $(1,2,3,7,4,8,6,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.