Properties

Label 4.5e4_11e2_19e2.8t16.11
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$27300625= 5^{4} \cdot 11^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 18 x^{6} + 7 x^{5} + 130 x^{4} - 52 x^{3} - 378 x^{2} + 431 x + 991 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 251 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 19 + 171\cdot 251 + 225\cdot 251^{2} + 178\cdot 251^{3} + 16\cdot 251^{4} + 220\cdot 251^{5} +O\left(251^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 40 + 75\cdot 251 + 239\cdot 251^{2} + 112\cdot 251^{3} + 176\cdot 251^{4} + 118\cdot 251^{5} +O\left(251^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 75 + 14\cdot 251 + 250\cdot 251^{2} + 175\cdot 251^{3} + 174\cdot 251^{4} + 211\cdot 251^{5} +O\left(251^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 119 + 213\cdot 251 + 91\cdot 251^{2} + 82\cdot 251^{3} + 13\cdot 251^{4} + 18\cdot 251^{5} +O\left(251^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 136 + 214\cdot 251 + 194\cdot 251^{2} + 190\cdot 251^{3} + 18\cdot 251^{4} + 14\cdot 251^{5} +O\left(251^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 156 + 28\cdot 251 + 140\cdot 251^{2} + 14\cdot 251^{3} + 91\cdot 251^{4} + 136\cdot 251^{5} +O\left(251^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 217 + 248\cdot 251 + 8\cdot 251^{2} + 239\cdot 251^{3} + 2\cdot 251^{4} + 153\cdot 251^{5} +O\left(251^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 243 + 37\cdot 251 + 104\cdot 251^{2} + 9\cdot 251^{3} + 8\cdot 251^{4} + 132\cdot 251^{5} +O\left(251^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(5,7)$
$(1,6,4,3)(2,7,8,5)$
$(1,5,3,8,4,7,6,2)$
$(1,4)(2,8)$
$(2,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,8)(3,6)(5,7)$ $-4$
$2$ $2$ $(2,8)(5,7)$ $0$
$4$ $2$ $(1,4)(2,8)$ $0$
$4$ $2$ $(1,6)(2,7)(3,4)(5,8)$ $0$
$2$ $4$ $(1,6,4,3)(2,7,8,5)$ $0$
$2$ $4$ $(1,6,4,3)(2,5,8,7)$ $0$
$4$ $8$ $(1,5,3,8,4,7,6,2)$ $0$
$4$ $8$ $(1,8,6,5,4,2,3,7)$ $0$
$4$ $8$ $(1,7,6,2,4,5,3,8)$ $0$
$4$ $8$ $(1,2,3,7,4,8,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.