Properties

Label 4.5e4_11e2_19e2.8t16.10c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$27300625= 5^{4} \cdot 11^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 18 x^{6} - 9 x^{5} + 115 x^{4} + 31 x^{3} + 408 x^{2} + 238 x + 671 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 47 + 76\cdot 181 + 171\cdot 181^{2} + 98\cdot 181^{3} + 151\cdot 181^{4} + 162\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 55 + 50\cdot 181 + 118\cdot 181^{2} + 62\cdot 181^{3} + 25\cdot 181^{4} + 85\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 70 + 9\cdot 181 + 66\cdot 181^{2} + 156\cdot 181^{3} + 62\cdot 181^{4} + 61\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 86 + 177\cdot 181 + 11\cdot 181^{2} + 126\cdot 181^{3} + 83\cdot 181^{4} + 105\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 92 + 71\cdot 181 + 173\cdot 181^{2} + 86\cdot 181^{3} + 122\cdot 181^{4} + 3\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 99 + 65\cdot 181 + 6\cdot 181^{2} + 3\cdot 181^{3} + 166\cdot 181^{4} + 165\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 115 + 103\cdot 181 + 110\cdot 181^{2} + 173\cdot 181^{3} + 92\cdot 181^{4} + 10\cdot 181^{5} +O\left(181^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 162 + 169\cdot 181 + 65\cdot 181^{2} + 16\cdot 181^{3} + 19\cdot 181^{4} + 129\cdot 181^{5} +O\left(181^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(4,5)(6,8)$
$(1,7,8,4,2,3,6,5)$
$(3,7)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,7)(4,5)(6,8)$$-4$
$2$$2$$(3,7)(4,5)$$0$
$4$$2$$(4,5)(6,8)$$0$
$4$$2$$(1,8)(2,6)(3,5)(4,7)$$0$
$2$$4$$(1,8,2,6)(3,5,7,4)$$0$
$2$$4$$(1,8,2,6)(3,4,7,5)$$0$
$4$$8$$(1,7,8,4,2,3,6,5)$$0$
$4$$8$$(1,4,6,7,2,5,8,3)$$0$
$4$$8$$(1,7,8,5,2,3,6,4)$$0$
$4$$8$$(1,5,6,7,2,4,8,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.