Properties

Label 4.5e4_11e2.8t16.2
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$75625= 5^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 8 x^{6} - 9 x^{5} + 15 x^{4} - 9 x^{3} + 8 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 251 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 76\cdot 251 + 117\cdot 251^{2} + 174\cdot 251^{3} + 190\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 67 + 179\cdot 251 + 225\cdot 251^{2} + 194\cdot 251^{3} + 96\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 71 + 182\cdot 251 + 220\cdot 251^{2} + 135\cdot 251^{3} + 191\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 77 + 32\cdot 251 + 155\cdot 251^{2} + 230\cdot 251^{3} + 85\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 87 + 127\cdot 251 + 190\cdot 251^{2} + 201\cdot 251^{3} + 25\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 99 + 64\cdot 251 + 189\cdot 251^{2} + 247\cdot 251^{3} + 22\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 163 + 62\cdot 251 + 115\cdot 251^{2} + 209\cdot 251^{3} + 216\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 176 + 28\cdot 251 + 41\cdot 251^{2} + 111\cdot 251^{3} + 173\cdot 251^{4} +O\left(251^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,6)(4,5,7,8)$
$(4,7)(5,8)$
$(3,6)(5,8)$
$(1,7,3,5,2,4,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,6)(4,7)(5,8)$ $-4$
$2$ $2$ $(4,7)(5,8)$ $0$
$4$ $2$ $(3,6)(5,8)$ $0$
$4$ $2$ $(1,3)(2,6)(4,5)(7,8)$ $0$
$2$ $4$ $(1,3,2,6)(4,5,7,8)$ $0$
$2$ $4$ $(1,3,2,6)(4,8,7,5)$ $0$
$4$ $8$ $(1,7,3,5,2,4,6,8)$ $0$
$4$ $8$ $(1,5,6,7,2,8,3,4)$ $0$
$4$ $8$ $(1,7,3,8,2,4,6,5)$ $0$
$4$ $8$ $(1,8,6,7,2,5,3,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.