Properties

Label 4.5e4_11e2.8t16.1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 5^{4} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$75625= 5^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 8 x^{6} + 7 x^{5} + 15 x^{4} - 12 x^{3} - 18 x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 631 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 45 + 309\cdot 631 + 110\cdot 631^{2} + 149\cdot 631^{3} + 11\cdot 631^{4} +O\left(631^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 + 570\cdot 631 + 480\cdot 631^{2} + 284\cdot 631^{3} + 480\cdot 631^{4} +O\left(631^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 156 + 72\cdot 631 + 581\cdot 631^{2} + 99\cdot 631^{3} + 310\cdot 631^{4} +O\left(631^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 207 + 25\cdot 631 + 611\cdot 631^{2} + 263\cdot 631^{3} + 395\cdot 631^{4} +O\left(631^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 219 + 586\cdot 631 + 456\cdot 631^{2} + 16\cdot 631^{3} + 187\cdot 631^{4} +O\left(631^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 250 + 430\cdot 631 + 169\cdot 631^{2} + 239\cdot 631^{3} + 57\cdot 631^{4} +O\left(631^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 397 + 508\cdot 631 + 218\cdot 631^{2} + 450\cdot 631^{3} + 188\cdot 631^{4} +O\left(631^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 571 + 21\cdot 631 + 526\cdot 631^{2} + 388\cdot 631^{3} + 262\cdot 631^{4} +O\left(631^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,7)(3,8,4,5)$
$(2,7)(5,8)$
$(1,4,7,8,6,3,2,5)$
$(3,4)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,6)(2,7)(3,4)(5,8)$ $-4$
$2$ $2$ $(3,4)(5,8)$ $0$
$4$ $2$ $(2,7)(5,8)$ $0$
$4$ $2$ $(1,2)(3,8)(4,5)(6,7)$ $0$
$2$ $4$ $(1,2,6,7)(3,8,4,5)$ $0$
$2$ $4$ $(1,7,6,2)(3,8,4,5)$ $0$
$4$ $8$ $(1,4,7,8,6,3,2,5)$ $0$
$4$ $8$ $(1,8,2,4,6,5,7,3)$ $0$
$4$ $8$ $(1,4,7,5,6,3,2,8)$ $0$
$4$ $8$ $(1,5,2,4,6,8,7,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.