Properties

Label 4.84255125.12t34.b.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $84255125$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(84255125\)\(\medspace = 5^{3} \cdot 821^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.2766938305.1
Galois orbit size: $1$
Smallest permutation container: 12T34
Parity: even
Determinant: 1.5.2t1.a.a
Projective image: $\SOPlus(4,2)$
Projective stem field: Galois closure of 6.2.2766938305.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + x^{4} + 29x^{3} - 29x^{2} + 5 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 a + 12 + \left(13 a + 13\right)\cdot 19 + \left(12 a + 7\right)\cdot 19^{2} + \left(14 a + 2\right)\cdot 19^{3} + \left(16 a + 1\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 15 a + 14 + 5\cdot 19 + \left(6 a + 17\right)\cdot 19^{2} + \left(10 a + 8\right)\cdot 19^{3} + \left(14 a + 14\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 15 a + 16 + \left(5 a + 3\right)\cdot 19 + \left(6 a + 7\right)\cdot 19^{2} + \left(4 a + 4\right)\cdot 19^{3} + \left(2 a + 3\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 15 + 2\cdot 19 + 17\cdot 19^{2} + 15\cdot 19^{3} + 4\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 11 + 19 + 4\cdot 19^{2} + 12\cdot 19^{3} + 14\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 4 a + 10 + \left(18 a + 10\right)\cdot 19 + \left(12 a + 3\right)\cdot 19^{2} + \left(8 a + 13\right)\cdot 19^{3} + \left(4 a + 18\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(1,3)$$-2$
$9$$2$$(1,3)(2,4)$$0$
$4$$3$$(1,3,5)(2,4,6)$$-2$
$4$$3$$(1,3,5)$$1$
$18$$4$$(1,4,3,2)(5,6)$$0$
$12$$6$$(1,4,3,6,5,2)$$0$
$12$$6$$(1,3)(2,4,6)$$1$