Properties

Label 4.5e3_821e2.12t34.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{3} \cdot 821^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$84255125= 5^{3} \cdot 821^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} + 29 x^{3} - 29 x^{2} + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 12 + \left(13 a + 13\right)\cdot 19 + \left(12 a + 7\right)\cdot 19^{2} + \left(14 a + 2\right)\cdot 19^{3} + \left(16 a + 1\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 14 + 5\cdot 19 + \left(6 a + 17\right)\cdot 19^{2} + \left(10 a + 8\right)\cdot 19^{3} + \left(14 a + 14\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 16 + \left(5 a + 3\right)\cdot 19 + \left(6 a + 7\right)\cdot 19^{2} + \left(4 a + 4\right)\cdot 19^{3} + \left(2 a + 3\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 + 2\cdot 19 + 17\cdot 19^{2} + 15\cdot 19^{3} + 4\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 + 19 + 4\cdot 19^{2} + 12\cdot 19^{3} + 14\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 10 + \left(18 a + 10\right)\cdot 19 + \left(12 a + 3\right)\cdot 19^{2} + \left(8 a + 13\right)\cdot 19^{3} + \left(4 a + 18\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(1,3)$ $-2$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,5)(2,4,6)$ $-2$
$4$ $3$ $(1,3,5)$ $1$
$18$ $4$ $(1,4,3,2)(5,6)$ $0$
$12$ $6$ $(1,4,3,6,5,2)$ $0$
$12$ $6$ $(1,3)(2,4,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.