Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 47 a + 26 + \left(14 a + 42\right)\cdot 71 + \left(26 a + 3\right)\cdot 71^{2} + \left(68 a + 33\right)\cdot 71^{3} + \left(7 a + 43\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ a + 27 + \left(41 a + 23\right)\cdot 71 + \left(58 a + 23\right)\cdot 71^{2} + 10\cdot 71^{3} + \left(34 a + 21\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 70 a + 29 + \left(29 a + 33\right)\cdot 71 + \left(12 a + 28\right)\cdot 71^{2} + \left(70 a + 24\right)\cdot 71^{3} + \left(36 a + 17\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 24 a + 49 + \left(56 a + 24\right)\cdot 71 + \left(44 a + 41\right)\cdot 71^{2} + \left(2 a + 1\right)\cdot 71^{3} + \left(63 a + 62\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 55 + 46\cdot 71 + 20\cdot 71^{2} + 70\cdot 71^{3} + 6\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 30 + 42\cdot 71 + 24\cdot 71^{2} + 2\cdot 71^{3} + 62\cdot 71^{4} +O\left(71^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,4,6)$ |
| $(1,2)(3,4)(5,6)$ |
| $(1,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $6$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-2$ |
| $6$ |
$2$ |
$(2,3)$ |
$0$ |
| $9$ |
$2$ |
$(1,4)(2,3)$ |
$0$ |
| $4$ |
$3$ |
$(1,4,6)(2,3,5)$ |
$1$ |
| $4$ |
$3$ |
$(2,3,5)$ |
$-2$ |
| $18$ |
$4$ |
$(1,2,4,3)(5,6)$ |
$0$ |
| $12$ |
$6$ |
$(1,2,4,3,6,5)$ |
$1$ |
| $12$ |
$6$ |
$(1,4,6)(2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.