Properties

Label 4.5e3_7e2_47e2.5t5.2
Dimension 4
Group $\PGL(2,5)$
Conductor $ 5^{3} \cdot 7^{2} \cdot 47^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$13530125= 5^{3} \cdot 7^{2} \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} - x^{3} + 2 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 58 + 50\cdot 79 + 70\cdot 79^{2} + 2\cdot 79^{3} + 14\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 7 + \left(75 a + 8\right)\cdot 79 + \left(12 a + 5\right)\cdot 79^{2} + \left(11 a + 21\right)\cdot 79^{3} + \left(40 a + 9\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 43 + \left(72 a + 25\right)\cdot 79 + \left(9 a + 28\right)\cdot 79^{2} + \left(55 a + 22\right)\cdot 79^{3} + \left(65 a + 46\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 a + 73 + \left(6 a + 67\right)\cdot 79 + \left(69 a + 44\right)\cdot 79^{2} + \left(23 a + 67\right)\cdot 79^{3} + \left(13 a + 56\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 72 a + 14 + \left(3 a + 76\right)\cdot 79 + \left(66 a + 21\right)\cdot 79^{2} + \left(67 a + 19\right)\cdot 79^{3} + \left(38 a + 38\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 + 8\cdot 79 + 66\cdot 79^{2} + 24\cdot 79^{3} + 72\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6,5,3,2)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)(3,6)(4,5)$ $2$
$15$ $2$ $(1,2)(4,6)$ $0$
$20$ $3$ $(1,6,3)(2,4,5)$ $1$
$30$ $4$ $(1,4,2,6)$ $0$
$24$ $5$ $(1,3,4,6,5)$ $-1$
$20$ $6$ $(1,4,6,5,3,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.