Properties

Label 4.5e3_7e2_19e2.8t21.2c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 5^{3} \cdot 7^{2} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$2211125= 5^{3} \cdot 7^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 5 x^{6} - 3 x^{5} + 20 x^{4} + 5 x^{3} + 45 x^{2} + 15 x + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 123\cdot 199 + 191\cdot 199^{2} + 166\cdot 199^{3} + 117\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 61 + 137\cdot 199 + 135\cdot 199^{2} + 154\cdot 199^{3} + 132\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 107 + 68\cdot 199 + 168\cdot 199^{2} + 100\cdot 199^{3} + 179\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 133 + 55\cdot 199 + 27\cdot 199^{2} + 109\cdot 199^{3} + 189\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 157 + 41\cdot 199 + 43\cdot 199^{2} + 199^{3} + 128\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 167 + 34\cdot 199 + 199^{2} + 81\cdot 199^{3} + 155\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 173 + 174\cdot 199 + 166\cdot 199^{2} + 76\cdot 199^{3} + 185\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 192 + 159\cdot 199 + 61\cdot 199^{2} + 105\cdot 199^{3} + 105\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,8)(3,6)(4,7)$
$(2,8)(3,6)$
$(1,3,5,6)(2,4,8,7)$
$(2,6,8,3)(4,7)$
$(1,4)(2,6)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,8)(3,6)(4,7)$$-4$
$2$$2$$(1,4)(2,6)(3,8)(5,7)$$0$
$2$$2$$(1,7)(2,6)(3,8)(4,5)$$0$
$2$$2$$(2,8)(3,6)$$0$
$4$$2$$(1,2)(3,7)(4,6)(5,8)$$0$
$4$$4$$(1,3,5,6)(2,4,8,7)$$0$
$4$$4$$(1,2,7,6)(3,5,8,4)$$0$
$4$$4$$(1,6,7,2)(3,4,8,5)$$0$
$4$$4$$(2,6,8,3)(4,7)$$0$
$4$$4$$(2,3,8,6)(4,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.