Properties

Label 4.5e3_7e2_19e2.8t21.1c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 5^{3} \cdot 7^{2} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$2211125= 5^{3} \cdot 7^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} - 12 x^{5} + 19 x^{4} - 18 x^{3} + 27 x^{2} - 7 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 349 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 38 + 2\cdot 349 + 133\cdot 349^{2} + 245\cdot 349^{3} + 103\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 103 + 157\cdot 349 + 95\cdot 349^{2} + 50\cdot 349^{3} + 223\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 132 + 320\cdot 349 + 8\cdot 349^{2} + 148\cdot 349^{3} + 84\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 168 + 195\cdot 349 + 177\cdot 349^{2} + 217\cdot 349^{3} + 23\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 197 + 333\cdot 349 + 263\cdot 349^{2} + 172\cdot 349^{3} + 27\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 209 + 185\cdot 349 + 140\cdot 349^{2} + 36\cdot 349^{3} + 220\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 231 + 11\cdot 349 + 161\cdot 349^{2} + 257\cdot 349^{3} + 74\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 320 + 189\cdot 349 + 66\cdot 349^{2} + 268\cdot 349^{3} + 289\cdot 349^{4} +O\left(349^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(2,7)(4,5)$
$(1,8)(2,5)(3,6)(4,7)$
$(2,5,7,4)(6,8)$
$(1,2,3,7)(4,8,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,3)(2,7)(4,5)(6,8)$$-4$
$2$$2$$(1,8)(2,5)(3,6)(4,7)$$0$
$2$$2$$(1,8)(2,4)(3,6)(5,7)$$0$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(1,5)(2,8)(3,4)(6,7)$$0$
$4$$4$$(1,2,3,7)(4,8,5,6)$$0$
$4$$4$$(1,5,8,7)(2,3,4,6)$$0$
$4$$4$$(1,7,8,5)(2,6,4,3)$$0$
$4$$4$$(2,5,7,4)(6,8)$$0$
$4$$4$$(2,4,7,5)(6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.