Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 89 }$ to precision 9.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 23 + 85\cdot 89 + 57\cdot 89^{2} + 33\cdot 89^{3} + 21\cdot 89^{4} + 43\cdot 89^{5} + 55\cdot 89^{6} + 7\cdot 89^{7} + 84\cdot 89^{8} +O\left(89^{ 9 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 30 + 33\cdot 89 + 69\cdot 89^{2} + 27\cdot 89^{3} + 62\cdot 89^{5} + 73\cdot 89^{6} + 37\cdot 89^{7} + 31\cdot 89^{8} +O\left(89^{ 9 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 42 + 78\cdot 89 + 84\cdot 89^{2} + 40\cdot 89^{3} + 89^{4} + 20\cdot 89^{5} + 19\cdot 89^{6} + 70\cdot 89^{7} + 4\cdot 89^{8} +O\left(89^{ 9 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 44 + 10\cdot 89 + 65\cdot 89^{2} + 47\cdot 89^{3} + 89^{4} + 60\cdot 89^{5} + 76\cdot 89^{6} + 46\cdot 89^{7} + 54\cdot 89^{8} +O\left(89^{ 9 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 46 + 78\cdot 89 + 23\cdot 89^{2} + 41\cdot 89^{3} + 87\cdot 89^{4} + 28\cdot 89^{5} + 12\cdot 89^{6} + 42\cdot 89^{7} + 34\cdot 89^{8} +O\left(89^{ 9 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 48 + 10\cdot 89 + 4\cdot 89^{2} + 48\cdot 89^{3} + 87\cdot 89^{4} + 68\cdot 89^{5} + 69\cdot 89^{6} + 18\cdot 89^{7} + 84\cdot 89^{8} +O\left(89^{ 9 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 60 + 55\cdot 89 + 19\cdot 89^{2} + 61\cdot 89^{3} + 88\cdot 89^{4} + 26\cdot 89^{5} + 15\cdot 89^{6} + 51\cdot 89^{7} + 57\cdot 89^{8} +O\left(89^{ 9 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 67 + 3\cdot 89 + 31\cdot 89^{2} + 55\cdot 89^{3} + 67\cdot 89^{4} + 45\cdot 89^{5} + 33\cdot 89^{6} + 81\cdot 89^{7} + 4\cdot 89^{8} +O\left(89^{ 9 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,2,3,4)(5,8,7,6)$ |
| $(1,4,8,5)(2,3,7,6)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
| $(1,8)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-4$ |
| $2$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(3,6)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,4)(3,8)(5,7)$ | $0$ |
| $4$ | $2$ | $(1,7)(2,8)(3,4)(5,6)$ | $0$ |
| $4$ | $4$ | $(1,4,8,5)(2,3,7,6)$ | $0$ |
| $4$ | $4$ | $(1,4,3,2)(5,6,7,8)$ | $0$ |
| $4$ | $4$ | $(1,2,3,4)(5,8,7,6)$ | $0$ |
| $4$ | $4$ | $(1,6,8,3)(4,5)$ | $0$ |
| $4$ | $4$ | $(1,3,8,6)(4,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.