Properties

Label 4.5e3_701e2.12t34.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{3} \cdot 701^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$61425125= 5^{3} \cdot 701^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 9 x^{4} - 39 x^{3} + 47 x^{2} - 124 x + 65 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 7 + \left(2 a + 12\right)\cdot 29 + \left(27 a + 3\right)\cdot 29^{2} + \left(4 a + 17\right)\cdot 29^{3} + \left(12 a + 1\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 22\cdot 29 + 27\cdot 29^{2} + 20\cdot 29^{3} + 28\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 16\cdot 29 + 5\cdot 29^{2} + 26\cdot 29^{3} + 27\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 26 + \left(26 a + 28\right)\cdot 29 + \left(a + 19\right)\cdot 29^{2} + \left(24 a + 14\right)\cdot 29^{3} + \left(16 a + 28\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 a + \left(15 a + 1\right)\cdot 29 + \left(7 a + 4\right)\cdot 29^{2} + \left(22 a + 10\right)\cdot 29^{3} + \left(9 a + 1\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 17 + \left(13 a + 5\right)\cdot 29 + \left(21 a + 26\right)\cdot 29^{2} + \left(6 a + 26\right)\cdot 29^{3} + \left(19 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(1,2)(3,5)(4,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$0$
$6$$2$$(1,3)$$-2$
$9$$2$$(1,3)(2,5)$$0$
$4$$3$$(1,3,4)$$1$
$4$$3$$(1,3,4)(2,5,6)$$-2$
$18$$4$$(1,5,3,2)(4,6)$$0$
$12$$6$$(1,5,3,6,4,2)$$0$
$12$$6$$(1,3)(2,5,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.