Properties

Label 4.5e3_61e2.8t21.1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 5^{3} \cdot 61^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$465125= 5^{3} \cdot 61^{2} $
Artin number field: Splitting field of $f= x^{8} + 9 x^{6} - 18 x^{5} + 14 x^{4} - 20 x^{3} + 30 x^{2} - 20 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 8 + \left(5 a + 8\right)\cdot 19 + \left(12 a + 6\right)\cdot 19^{2} + \left(3 a + 15\right)\cdot 19^{3} + \left(12 a + 14\right)\cdot 19^{4} + \left(16 a + 12\right)\cdot 19^{5} + \left(11 a + 5\right)\cdot 19^{6} + \left(18 a + 18\right)\cdot 19^{7} + \left(3 a + 11\right)\cdot 19^{8} + \left(8 a + 11\right)\cdot 19^{9} + \left(14 a + 8\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 7 + 10\cdot 19 + 9\cdot 19^{2} + 7\cdot 19^{3} + 18\cdot 19^{4} + 19^{5} + 11\cdot 19^{6} + 15\cdot 19^{7} + 11\cdot 19^{8} + 5\cdot 19^{9} + 14\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 8 + \left(13 a + 4\right)\cdot 19 + \left(8 a + 11\right)\cdot 19^{2} + \left(9 a + 7\right)\cdot 19^{3} + \left(9 a + 9\right)\cdot 19^{4} + \left(2 a + 7\right)\cdot 19^{5} + \left(9 a + 12\right)\cdot 19^{6} + \left(18 a + 11\right)\cdot 19^{7} + \left(15 a + 15\right)\cdot 19^{8} + \left(3 a + 1\right)\cdot 19^{9} + \left(14 a + 2\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 9 + \left(13 a + 12\right)\cdot 19 + \left(6 a + 13\right)\cdot 19^{2} + \left(15 a + 6\right)\cdot 19^{3} + \left(6 a + 4\right)\cdot 19^{4} + \left(2 a + 17\right)\cdot 19^{5} + 7 a\cdot 19^{6} + 6\cdot 19^{7} + \left(15 a + 16\right)\cdot 19^{8} + \left(10 a + 15\right)\cdot 19^{9} + \left(4 a + 14\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 17 + 19 + 14\cdot 19^{2} + 5\cdot 19^{3} + 17\cdot 19^{4} + 13\cdot 19^{5} + 14\cdot 19^{6} + 10\cdot 19^{7} + 11\cdot 19^{8} + 17\cdot 19^{9} + 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 13 + \left(5 a + 12\right)\cdot 19 + \left(10 a + 6\right)\cdot 19^{2} + \left(9 a + 8\right)\cdot 19^{3} + \left(9 a + 9\right)\cdot 19^{4} + 16 a\cdot 19^{5} + 9 a\cdot 19^{6} + 2\cdot 19^{7} + \left(3 a + 13\right)\cdot 19^{8} + \left(15 a + 8\right)\cdot 19^{9} + \left(4 a + 12\right)\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 11 + 10\cdot 19 + 10\cdot 19^{2} + 4\cdot 19^{3} + 14\cdot 19^{4} + 6\cdot 19^{5} + 2\cdot 19^{6} + 13\cdot 19^{7} + 3\cdot 19^{8} + 8\cdot 19^{9} + 16\cdot 19^{10} +O\left(19^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 3 + 15\cdot 19 + 3\cdot 19^{2} + 19^{3} + 7\cdot 19^{4} + 15\cdot 19^{5} + 9\cdot 19^{6} + 17\cdot 19^{7} + 10\cdot 19^{8} + 6\cdot 19^{9} + 5\cdot 19^{10} +O\left(19^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(3,6)$
$(1,6,4,3)(2,5)$
$(1,7)(2,6)(3,5)(4,8)$
$(1,4)(2,5)(3,6)(7,8)$
$(1,6)(2,7)(3,4)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,5)(3,6)(7,8)$ $-4$
$2$ $2$ $(1,6)(2,7)(3,4)(5,8)$ $0$
$2$ $2$ $(1,6)(2,8)(3,4)(5,7)$ $0$
$2$ $2$ $(1,4)(3,6)$ $0$
$4$ $2$ $(1,7)(2,6)(3,5)(4,8)$ $0$
$4$ $4$ $(1,7,6,5)(2,4,8,3)$ $0$
$4$ $4$ $(1,5,6,7)(2,3,8,4)$ $0$
$4$ $4$ $(1,6,4,3)(2,5)$ $0$
$4$ $4$ $(1,3,4,6)(2,5)$ $0$
$4$ $4$ $(1,5,4,2)(3,7,6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.