Properties

Label 4.5e3_53e2.5t3.1c1
Dimension 4
Group $F_5$
Conductor $ 5^{3} \cdot 53^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$351125= 5^{3} \cdot 53^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{3} + 9 x^{2} - 11 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 4\cdot 29 + 6\cdot 29^{2} + 12\cdot 29^{3} + 27\cdot 29^{4} + 8\cdot 29^{5} + 7\cdot 29^{6} + 17\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 5 + \left(20 a + 5\right)\cdot 29 + \left(13 a + 27\right)\cdot 29^{2} + \left(16 a + 28\right)\cdot 29^{3} + \left(14 a + 4\right)\cdot 29^{4} + \left(10 a + 18\right)\cdot 29^{5} + \left(18 a + 6\right)\cdot 29^{6} + \left(3 a + 5\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 16 + \left(8 a + 11\right)\cdot 29 + \left(15 a + 17\right)\cdot 29^{2} + \left(12 a + 10\right)\cdot 29^{3} + \left(14 a + 3\right)\cdot 29^{4} + \left(18 a + 27\right)\cdot 29^{5} + 10 a\cdot 29^{6} + \left(25 a + 5\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 8 + \left(a + 10\right)\cdot 29 + \left(18 a + 17\right)\cdot 29^{2} + \left(8 a + 19\right)\cdot 29^{3} + \left(13 a + 25\right)\cdot 29^{4} + \left(13 a + 3\right)\cdot 29^{5} + \left(24 a + 25\right)\cdot 29^{6} + \left(23 a + 25\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 26 + \left(27 a + 26\right)\cdot 29 + \left(10 a + 18\right)\cdot 29^{2} + \left(20 a + 15\right)\cdot 29^{3} + \left(15 a + 25\right)\cdot 29^{4} + \left(15 a + 28\right)\cdot 29^{5} + \left(4 a + 17\right)\cdot 29^{6} + \left(5 a + 4\right)\cdot 29^{7} +O\left(29^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,5)(3,4)$
$(1,4,5,3)$
$(1,4,2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$5$$2$$(1,5)(3,4)$$0$
$5$$4$$(1,4,5,3)$$0$
$5$$4$$(1,3,5,4)$$0$
$4$$5$$(1,4,2,3,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.