Properties

Label 4.5e3_421e2.12t34.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{3} \cdot 421^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$22155125= 5^{3} \cdot 421^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} - 21 x^{3} + 21 x^{2} + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 5 + \left(25 a + 5\right)\cdot 31 + \left(5 a + 6\right)\cdot 31^{2} + \left(16 a + 8\right)\cdot 31^{3} + \left(27 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 19 + \left(5 a + 17\right)\cdot 31 + \left(25 a + 23\right)\cdot 31^{2} + \left(14 a + 3\right)\cdot 31^{3} + \left(3 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 + 8\cdot 31 + 31^{2} + 19\cdot 31^{3} + 5\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 13 + \left(15 a + 28\right)\cdot 31 + \left(18 a + 15\right)\cdot 31^{2} + \left(15 a + 6\right)\cdot 31^{3} + \left(28 a + 13\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 + 21\cdot 31 + 8\cdot 31^{2} + 5\cdot 31^{3} + 25\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 a + 14 + \left(15 a + 12\right)\cdot 31 + \left(12 a + 6\right)\cdot 31^{2} + \left(15 a + 19\right)\cdot 31^{3} + \left(2 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,4)(2,5)(3,6)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,4)(2,5)(3,6)$$0$
$6$$2$$(1,2)$$-2$
$9$$2$$(1,2)(4,5)$$0$
$4$$3$$(1,2,3)(4,5,6)$$-2$
$4$$3$$(1,2,3)$$1$
$18$$4$$(1,5,2,4)(3,6)$$0$
$12$$6$$(1,5,2,6,3,4)$$0$
$12$$6$$(1,2)(4,5,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.